Title page for 93222009


[Back to Results | New Search]

Student Number 93222009
Author Yi-Han Su(蘇郁涵)
Author's Email Address u9018300@cc.ncu.edu.tw
Statistics This thesis had been viewed 1949 times. Download 765 times.
Department Physics
Year 2006
Semester 1
Degree Master
Type of Document Master's Thesis
Language English
Title An AFM Study For Lithography and Dynamic Behaviors on Lipid Membranes
Date of Defense 2006-09-27
Page Count 52
Keyword
  • lipid membrane
  • lithography
  • Abstract Nanoscale-lithography was performed using AFM tips on lipid membranes of 12 nm thickness over mica through “mechanical method” and also on membranes of various thickness over silicon wafer through “electrostatic method”. Phospholipid is one of the main components of biological membranes, and also a kind of soft matter. Lipid molecules can assemble into extremely uniform thin films due to its “self-assembly” property. If we use the AFM tip in contact mode to touch or move over lipid membranes, the interaction between tip and membrane is strong enough to change the surface morphology. For example, the tip may absorb lipid molecules or scrape the membrane films. Therefore we can make nano-patterns by controlling the tip-membrane interaction and the tip’s trajectory. Besides, “electrostatic method” is an approach giving a bias voltage between the silicon wafer and the tip to enable a strong electric field as well as current passing through lipid membranes. The current causes Joule heating and that enables lipid molecules to be removed from the silicon wafer to form patterns.
    However, the indentation straight line formed on membranes over mica is not static but evolves with time, such as length contaction as well as width expansion. However, the hole area remains approximately the same (The observation time is up to three hours). Hence we use the observation to derive the ratio of resistance between membrane and mica to membrane surface tension (β/γ). We find that the value of β/γ that depends on temperature decreases with temperature, which suggests that the resistance decreases with temperature. This is clue to the mobility increased as temperature was raised. Furthermore, we observed that the indentation lines on membrane of 12 nm thickness over the silicon wafer at room temperature are not deformed with time. This indicates that the resistance (β) is large enough to prevent from membrane movement at R.T.
    Table of Content Chapter1 Introduction……………………………..……………………….1
    Chapter2 Literature review………………..……………………………….4
       2.1 Nanolithography………………………………………………..4
         2.1.1 Tip-induced oxidation lithography…………………………………4
         2.1.2 Thermomechanical writing with an AFM tip………………………5
         2.1.3 Electrostatic lithography on polymers by AFM……………………7
       2.2 Concepts of lipids……………………………………………...11
        2.2.1 Biological membranes…………………………………………….11
        2.2.2 Structures and properties of phospholipids……………………….11
        2.2.3 DPPC…………………………………………………………… ..14
         2.2.4 Membrane formation……………………………………………...14
    Chapter3 Experiment work………………….…………………………...16
       3.1 Atomic force microscopy (AFM) system……………………..16
         3.1.1 AFM principle…………………………………………………….16
        3.1.2 AFM modes……………………………………………………….18
        3.1.3 Experimental apparatus and system structure………….…………19
        3.1.4 AFM tip and heater………………………………………………..23
       3.2 Lipid membrane preparation………………………………...24
       3.3 AFM measurement……………………………………………25
        3.3.1 Lithography by “mechanically method”………………………25
        3.3.2 Manipulate lipid vesicles………………………………………….25
        3.3.3 Lithography by electrostatic method……………………………...25
    Chapter4 Result & discussion…………..………………………………...27
       4.1 Lithography by “mechanically method”…………………….27
        4.1.1 Dot patterns……………………………………………………….27
        4.1.2 Line patterns………………………………………………………29
       4.2 Lithography by “electrostatic method”……………………...35
       4.3 Manipulate vesicles by AFM tip……………………………...39
       4.4 Dynamic behaviors on membranes and simulation…………40
       4.4.1 Dynamics over mica………………………………………...40
       4.4.2 Dynamics over silicon wafer………………………………..46
    Chapter5 Conclusion…………..…………………………………………..50
    Referenc………………………..…………………………………………….51
    Reference [1]M. F. Luo, Y. L. Yeh, P. L. Chen, C. H. Nien, and Y. W. Hsueh, J. Chem. Phys. 124, 194702 (2006)
    [2]Ilya Reviakine and Alain Brisson, Langmuir 16, 1806 (2000)
    [3]Deborah R. Fattal, David Andelman, and Avinoam Ben-Shaul, Langmuir 11, 1154 (1995)
    [4]Fuyuki Tokumasu, Albert J. Jin, Gerald W. Feigenson, and James A. Dvorak, Biophys. J. 84, 2609 (2003)
    [5]H. Lodish, A Berk, P. Matsudaira, C. A. Kaiser, M. Krieger, M. P. Scott, L. Zipursky, and J. Darnell, Molecular Cell Biology, 5th ed. (Freeman and Co., New York, 2000)
    [6]E. Sackmann, in Biophysics, edited by W. Hoppe. W. Lohmann, H. Markl, and H. Ziegler (1983).
    [7]M. Wortis and E. Evans. Physics in Canada 53, 281 (1997)
    [8]C. W. McConlogue and T. K. Vanderlick, Langmuir 13, 7158 (1997)
    [9]A. Charier and F. Thibaudau, Biophys. J. 89, 1904 (2005)
    [10]Jana Jass, Torbjörn Tjärnhage, and Gertrud Puu, Biophys. J. 79, 3153 (2000)
    [11]The Future of Data Storage Technologies (International Technology Research Institute World Technology Division Report, Loyola, Maryland, 1999)
    [12]Bae, Y. et al. Chem. Mater. 14, 1306 (2002)
    [13]McCord, M. A. & Rocks, M. J., in Handbook of Microlithography 1, 139 (1997)
    [14]Piner, R. D., Zhu, J., Xu, F., Hong, S. & Mirkin, C. A., Science 283, 661 (1999)
    [15]Park, M., Harrison, C., Chaikin, P. M., Register, R. A. & Adamson, D. H., Science 276, 1401 (1997)
    [16]Lammertink, R. et al. Adv. Mater. 12, 98 (2000)
    [17]Sergei F. Lyuksyutov, Richard A. Vaia, Pavel B. Paramonov, Shane Juhl, Lynn Waterhouse, Robert M. Ralich, Grigori Sigalov, and Erol Sancaktar, Nature 22, 468 (2003)
    [18]Minhwan Lee,a) Ryan O’Hayre, Fritz B. Prinz, Turgut M. Gür, Appl. Phys. Lett. 85, 3552 (2004)
    [19]Erik SchaÈ ffer, Thomas Thurn-Albrecht, Thomas P. Russell, and Ullrich Steiner, Nature 403, 874 (2000)
    [20]Richard D. Piner, Jin Zhu, Feng Xu, Seunghun Hong, Chad A. Mirkin, Science 283, 661 (1999)
    [21]Stephen Y. Chou, Lei Zhuang, and Linjie Guo, Appl. Phys. Lett. 75, 1004 (1999)
    [22]J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett, Appl. Phys. Lett. 56, 2001 (1990)
    [23]C.–F. Chen, S.-D. Tzeng, H.-Y. Chen, and S. Gwo, Optics Lett. 30, 652 (2005)
    [24]C. Z. Cai, W. L. Wang, X. Y. Chen, and Q. Q. Shu, Mater. Phys. Mech. 4, 111 (2001)
    [25]陳威志,“以原子力顯微鏡於砷化鎵與氮化鎵表面進行局部氧化微影技術之研究”,(2003)
    [26]H. J. Mamin and D. Rugar, Appl. Phys. Lett. 61, 1003 (1992)
    [27]I. Reviakine and A. Brisson, Langmuir 16, 1806 (2000)
    [28]J. Schmeider, Yves F. Dufrêne, William R. Barger, Jr., and Gil U. Lee, Biological Journal 79, 1107 (2000)
    [29]T. Kaasgaard, C. Leidy, John H. Crowe, Ole G. Mourtisen and Kent Jorgensen, Biophysical Journal 85, 350 (2003)
    [30]C. Leidy, T. Kaasgaard, John H. Crowe, Ole G. Biological Journal 83, 2625 (2002)
    [31]M. Rappolt, G. Pabst, G. Rapp, M. Kriechaum, H. Amenitsch, C. Krenn, S. Bernstorff, P. Laggner, European Biophysical Journal 29, 125 (2000)
    [32]Lewis, R. N. A. H. Mak, and R. N. McElhaney, Biochemistry 26, 6118 (1987)
    [33]Deborah R. Fattal, D. A. Ben-Shaul, Langmuir 11, 1154 (1995)
    [34]Robert B. Gennis, Biomembranes
    [35]J. Jass, T. Tjärnhage, and G. Puu, Biophysical Journal 79, 3153 (2000)
    [36]NT-MDT SPM Solver P47H Handbook
    [37]F. Tokumasu, Albert J. Jin, Gerald W. Feigenson, and James A. Dvorak, Biological Journal 84, 2609 (2003)
    Advisor
  • M-F Luo(羅夢凡)
  • Files
  • 93222009.pdf
  • approve immediately
    Date of Submission 2006-09-30

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.