Title page for 92521090


[Back to Results | New Search]

Student Number 92521090
Author Sung-Tzung Yang(楊宗松)
Author's Email Address 92521090@cc.ncu.edu.tw
Statistics This thesis had been viewed 3237 times. Download 3977 times.
Department Electrical Engineering
Year 2004
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Design and Implementation of a Novel Three-Phase for Automatic Voltage Regulator
Date of Defense 2005-06-22
Page Count 102
Keyword
  • AC chopper
  • ac voltage regulator
  • digital signal microcontroller
  • phase-shift pulse width modulation
  • Abstract Three-phase ac voltage regulator is capable of providing regulated power source, and one of the important issues of it is to stabilize the power quality. In this paper, a novel switching strategy called phase-shift pulse width modulation is applied to the three-phase four-wire ac voltage regulator(AVR)which utilizes a YY connection for the purpose of enhancing output power rating. The system is made up of three ac choppers with reversible voltage, AVR motherboards and transformers for series voltage compensation. The switching strategy is to match up the components of the system as mentioned above such that the compensation voltage with the same or opposite polarity for the input utility voltage can be simply obtained by controlling the duty cycle of power devices. Consequently, variations of the output voltage would be compensated or restrained. The fast sensing technique is adopted toward output voltage and the control law is implemented through the fixed-point digital signal microcontroller(DSM)(dsPIC30F2010). The system is able to improve reliability, response, efficiency, power factor and reduce cost. It is shown via the experimental results that the system achieves the expected goal of fast voltage regulation.
    Table of Content 中文摘要 I
    目 錄II
    圖 目 錄 VII
    表 目 錄 XI
    第一章 緒論01
    1.1 研究背景01
    1.2 電壓異常之原因與種類04
    1.3 解決電壓異常方法06
    1.3.1不斷電電源供應系統(UPS)07
    1.3.2 傳統交流穩壓器(AVR)08
    1.4 三相交流穩壓器之文獻探討14
    1.5 三相交流穩壓器之連接16
    1.6本論文之交流穩壓器17
    1.7論文內容大綱18
    第二章 新型三相高功率交流穩壓器系統原理19
    2.1 系統簡介19
    2.2 系統方塊分析20
    2.2.1 低頻串聯補償變壓器之設計21
    2.2.2 穩壓率之推導21
    2.2.3 交流截波器23
    2.2.4 換流器輸出濾波器之設計25
    2.2.5 數位訊號微處理器25
    2.3 新型相移式全橋交流電壓轉換器26
    2.3.1 極性可逆全橋相移電壓轉換器之分析27
    2.3.2 轉換器特性31
    2.4 系統架構實現32
    第三章 新型三相高功率交流穩壓器硬體電路設計分析37
    3.1 前言37
    3.2 硬體架構37
    3.2.1 感測及運算控制模組39
    3.2.2 功率級模組40
    3.2.3 電壓電流顯示及警示保護模組40
    3.2.4 電源供應模組41
    3.3 感測及運算控制模組電路分析42
    3.3.1 前言42
    3.3.2 數位訊號微控制器42
    3.3.3 驅動級電路43
    3.3.4 快速輸出電壓偵測電路43
    3.3.5 輸出電流感測電路45
    3.3.6 啟動保護控制電路46
    3.3.7 零點偵測電路46
    3.4 功率級模組電路分析47
    3.4.1 AC截波器47
    3.4.2 二階LC濾波器電路47
    3.4.3 繼電器保護電路47
    3.5 電壓電流顯示及警示保護模組電路分析48
    3.5.1 LED顯示電路48
    3.5.2 LCD顯示電路49
    3.5.3 功能切換電路49
    3.5.4異常狀態顯示電路49
    3.6 電源供應模組電路分析49
    3.6.1 電源保護49
    3.6.2 EMI濾波器電路50
    3.6.3 AC/DC整流電路50
    3.6.4 獨立驅動器之穩定電源電路50
    3.6.5線性穩定電源電路51
    3.7 控制器設計52
    3.7.1系統規格與模型建立52
    3.7.2電壓補償等效電路推導53
    3.7.3控制器設計與模擬55
    3.7.4控制器設計與實驗57
    第四章 實驗結果59
    4.1 實驗硬體架構59
    4.1.1 驅動級電路60
    4.1.2 功率級電路61
    4.1.3傳統電壓峰值與快速電壓偵測器實驗64
    4.2 輸入電源異常實驗66
    4.2.1 市電長期異常實驗結果67
    4.2.2 市電短期異常實驗結果68
    4.3 負載實驗70
    4.4 系統效率與功率因數實驗75
    第五章 結論與未來研究方向77
    5.1 結論77
    5.2 未來研究方向78
    參考文獻79
    附  錄82
    作者簡介87
    圖 目 錄
    圖1.1 電壓驟降幅度與故障點距離的關係02
    圖1.2 傳統UPS系統架構08
    圖1.3 抽頭變化式交流穩壓器09
    圖1.4 伺服式交流穩壓器10
    圖1.5 磁飽和式交流穩壓器11
    圖1.6 相位控制式交流穩壓器12
    圖1.7 線性補償交流穩壓器13
    圖1.8 單相系統架構圖14
    圖1.9 三相Y-Y連接系統架構圖14
    圖1.10 Y-Y三相兩臂中性點鉗位交流穩壓器15
    圖1.11 新型三相高功率交流穩壓器系統拓撲18
    圖2.1 系統方塊19
    圖2.2 單相穩壓系統拓撲20
    圖2.3(a)市電輸入端當功率級輸入源22
    圖2.3(b)負載輸出當功率級輸入源22
    圖2.4 交流截波器示意圖23
    圖2.5 極性可逆全橋相移電壓轉換器27
    圖2.6 直流降壓型轉換器27
    圖2.7 新型相移切換方式示意波形28
    圖2.8 功率開關切換等效電路圖30
    圖2.9 輸入/輸出電壓對應工作週期關係32
    圖2.10 單相系統電路圖33
    圖2.11 各級電壓示意波形圖35
    圖3.1 新型三相高功率交流穩壓器系統硬體架構圖38
    圖3.2 感測與運算控制模組架構圖39
    圖3.3 功率級模組架構圖40
    圖3.4 電壓電流顯示、過載警示模組架構圖41
    圖3.5 電源供應模組架構圖42
    圖3.6 驅動級電路架構43
    圖3.7 傳統電壓峰值偵測器43
    圖3.8 AD734硬體接腳圖44
    圖3.9 快速輸出電壓偵測電路圖45
    圖3.10 輸出電流感測電路硬體架構圖45
    圖3.11 輸出電流感測電路圖46
    圖3.12 零點偵測器示意圖46
    圖3.13 二階LC濾波器電路圖47
    圖3.14 LED顯示電路架構圖48
    圖3.15 電源保護、EMI濾波電路49
    圖3.16 獨立驅動穩定電源電路51
    圖3.17 線性穩定電源電路52
    圖3.18 電壓補償電路圖53
    圖3.19 等效電壓補償電路圖55
    圖3.20 開迴路模擬系統方塊55
    圖3.21 系統開迴路步階響應圖56
    圖3.22 控制系統方塊圖57
    圖4.1 系統實驗拓撲59
    圖4.2 驅動級電路60
    圖4.3 經隔離放大後之開關驅動訊號61
    圖4.4 功率級電路圖61
    圖4.5 功率級波形圖62
    圖4.6 功率級輸出倍頻波形63
    圖4.7 傳統電壓峰值偵測器暫態波形圖64
    圖4.8 快速電壓峰值偵測器暫態波形圖66
    圖4.9 模擬市電異常實驗示意圖66
    圖4.10 長期異常實驗結果68
    圖4.11 短期異常實驗結果69
    圖4.12 負載實驗示意圖70
    圖4.13 1.5kW電阻性負載實驗結果71
    圖4.14 8.6kW電阻性負載實驗結果73
    圖4.15 16kW電阻性負載實驗結果74
    圖4.16效率與負載變化關係圖76
    圖4.17 輸入功因與負載變化關係圖76
    附錄二
    圖B.1 新型三相交流穩壓器之正視圖85
    圖B.2 新型三相交流穩壓器之側視圖85
    圖B.3 三相交流負載箱86
    圖B.4 三相交流電源供應器86
    表 目 錄
    表1.1 83至87年間新竹科學園區電源輸入端異常事件統計02
    表1.2 以持續時間定義電壓異常型式05
    表1.3 常見電壓異常種類05
    表2.1 工作週期對應系統狀態36
    表3.1 交流穩壓器系統規格52
    表3.2 PID值計算表57
    表3.3 控制器參數試驗係數表58
    表4.1 三相輸入端功率75
    表4.2 三相輸出端功率75
    附錄一
    表A.1 dsPIC30F系列的週邊界面82
    表A.2 Microchip dsPIC VS. TI DSP比較83
    附錄二
    表B.1 新型三相交流穩壓器系統規格表84
    Reference 參考文獻
    [1]半導體工廠電力品質研討會講義,國立清華大學主辨,87年12月。
    [2]J. Lamoree, D. Mueller, P. Vinett, W. Jones, and M. Samotyj, ”Voltage sag analysis case studies,” IEEE Trans. Ind. Electron., vol. 30, no. 4, pp. 1083-1089, July-Aug. 1994.
    [3]M. J. Sullivan, T. Vardell, and M. Johnson, ” Power interruption costs to industrial and commercial consumers of electricity,” IEEE Trans. Ind. Electron., vol. 33, no. 6, pp. 1448-1458, Nov-Dec. 1997.
    [4]G. Wacker and R. Billinton, ” Customer cost of electric service interruptions,” IEEE in Proc., vol. 77, no. 6, pp. 919-930, June. 1989.
    [5]IEEE Std 493-1997 , 1998, IEEE recommended practice for the design of reliable industrial and commercial power systems, Chapter3.
    [6]周宏亮、吳坤德、黃敏昇,” 串聯型固態交流穩壓器之研製“,台達電子工業股份有限公司技術專文。
    [7]羅天賜,”電壓驟降概論”,工業技術研究院能源與資源研究所,台達電子工業股份有限公司技術專文。
    [8]洪穎怡/張錦程,”電力系統電壓驟降”電機月刊第十二卷第十一期,2002年十一月號。
    [9]C. J. Melhorn, A. Braz, P. Hofmann, and R. J. Mauro, ”An evaluation of energy storage techniques for improving ride-through capability for sensitive customers on underground networks,” IEEE Trans. Ind. Electron., vol. 33, no. 4, pp. 1083-1095, August. 1997.
    [10]H. W. Park, S. J. Park, J. G. Park, and C. U. Kim, ”A Novel High-Performance Voltage Regulator For Single-Phase AC Sources,” IEEE Trans. Ind. Electron., vol. 48, no. 3, June. 2001.
    [11]B. H. Kwon, G. Y. Jeong, S. H. Han, and D. H. Lee, ” Novel line conditioner with voltage up/down capability,” IEEE Trans. Ind. Electron., vol. 49, no. 5, pp. 1110-1119, Oct. 2002.
    [12]W. Guo, and P. K. Jain, “A Power-Factor-Corrected AC-AC Inverter Topology Using a Unified Controller for High-Frequency Power Distribution Architecture,” IEEE Trans. Ind. Electron., vol. 51, no. 4, August. 2004.
    [13]S. M. Hietpas, and M. Naden, ” Automatic voltage regulator using an AC voltage-voltage converter,” IEEE Trans. Ind. Electron., vol. 36, no. 1, pp. 33-38, Jan-Feb. 2000.
    [14]B. R. lin, T. C. Wei, and H. K. Chang, ” Novel AC Line Conditioner For Power Factor Correction,” IEEE Trans Aerospace And Electronic., vol. 40, no. 1, January. 2004.
    [15]宋揚曙編著,”電機機械”,全華科技圖書。
    [16]S. W. Middlekauff, and E. R. Collins, ” System and customer impact: considerations for series custom power devices,” IEEE Trans. Power Delivery., vol. 13, no. 1, pp. 278-282, Jan. 1998.
    [17]L. Gyugyi, C. D. Schauder, and K. K. Sen, ” Static synchronous series compensator: a solid-state approach to the series compensation of transmission lines,” IEEE Trans. Power Delivery., vol. 12, no. 1, pp. 406-417, Jan. 1997.
    [18]M. Vilathgamuwa, P. Ranjith, and S. S. Choi, ” Performance improvement of the dynamic voltage restorer with closed-loop load voltage and current-mode control” IEEE Trans. Power Electron., vol. 17, no. 5, pp. 824-834, Sept. 2002.
    [19]A. Khoei, and S. Yuvarajan, ” Single-phase AC-AC converters using power MOSFETs,” IEEE Trans. Ind. Electron., vol. 35, no. 3, pp. 442-443, Aug. 1988.
    [20]B. R. Lin, and T. C. Wei, ” Implementation of a single-phase AC/AC converter based on neutral-point-clamped topology,” IEEE Trans. Aerospace and Electronic Systems., vol. 39, no. 2, pp. 625-634, April. 2003.
    [21]M. H. Rashid 著,張天錫 譯,”Power electronics : circuits, devices and applications”,東華書局 印行.
    [22]George C. Chryssis 著,梁適安 譯,”High-frequency switching power supplies : theory and design”,全華科技圖書。
    [23]http://www.eedesign.com.tw/article/Spotlight/0504_mcu/0504_mcu.htm.
    [24]dsPIC30F Family Overview,dsPIC High Performance 16-bit Digital Signal Controller,2003 Microchip Technology Inc。
    [25]http://www.microchip.com/ParamChartSearch/chart.aspx?branchID=8051&mid=10&lang=en&pageId=75.
    [26]黃英哲、董勝源編著,”TMS320C240原理與C語言控制應用實習”,長高科技圖書。
    [27]http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1335&dDocName=en010241
    [28]梁適安編著,”交換式電源供給器之理論與實務設計”,全華科技圖書。
    [29]B. H. Kwon, J. H. Youm, and J. H. Choi, “Automatic voltage regulator with fast dynamic speed”, IEEE Trans. Power Electron., vol. 146, no. 2, pp.201-207, March. 1999.
    [30]洪敬恆,”新型相移脈波寬度調變交流穩壓器之研製”,國立中央大學電機所碩士論文,民國93年7月。
    [31]江炫樟編譯,”電力電子學”,全華科技圖書。
    Advisor
  • Kuo-Kai Shyu(徐國鎧)
  • Files
  • 92521090.pdf
  • approve in 1 year
    Date of Submission 2005-07-04

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.