Title page for 92324009


[Back to Results | New Search]

Student Number 92324009
Author Shu-Jun Wang(王書駿)
Author's Email Address No Public.
Statistics This thesis had been viewed 2090 times. Download 2944 times.
Department Chemical and Materials Engineering
Year 2004
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Pore Size Control of MCM-41
Date of Defense 2005-06-20
Page Count 108
Keyword
  • MCM-41
  • shrinkage
  • supermicropore
  • Abstract 具有微孔特性的沸石觸媒早期多用在石油化學工業的觸媒反應,其孔道直徑小於1 nm。1992年Mobil的研究團隊首先使用四級銨鹽界面活性劑作為有機模板成功合成出具有中孔洞之分子篩M41S,此類中孔材料具有高表面積(~1000m2/g)、孔徑分佈集中、孔徑大小可調整(1.5nm~10nm)等優點。因此也可以做為巨型分子篩、奈米導線模板、光學材料等應用。其中又以具有六角晶型結構之MCM-41被討論的最為深入。
    一般合成MCM-41是使用四級銨鹽界面活性劑作為有機模板。在水相中矽源與界面活性劑離子交換後再自我組裝成微胞。改變系統pH值或是加熱皆可促使其堆疊成六角晶型之矽酸鹽-有機模板複合物,然後矽酸鹽縮合成為中孔尺度之有機無機材料。利用鍛燒或是離子交換萃取法除去有機模板後即可得到中孔洞分子篩MCM-41。若要控制孔洞的尺寸,可以使用不同碳鍊長度之四級銨鹽以組裝成不同尺寸的微胞,由此得到不同孔洞大小之MCM-41。本研究發現只要改變製程,以相同碳鍊長度之四級銨鹽也可以合成出不同孔徑之MCM-41。
    藉由控制矽酸前驅液矽酸聚合程度我們可以利用10個碳鍊的界面活性劑(DTAB)合成出不同(100)晶面距大小之MCM-41產物;藉由改變縮合反應速率,我們還可以控制鍛燒前後樣品(100)晶面距的收縮率。低收縮率(<5%)的產物有較佳之結構穩定性,中收縮率(<10%)之產物可以提供給不同需求之應用領域,高收縮率(10%~15%)的產物可以形成具有超微孔(1.5~2nm)尺度之材料而仍然保持良好的結構,此材料由粉末X光繞射儀測得(100)晶面距為2.1 nm,由等溫氮氣吸附曲線以NLDFT理論計算出孔徑為1.8 nm。若是使用超微孔二氧化矽作為吸附式致冷機之吸附劑,在操作相對壓力0.08~0.25間有效吸附量為0.17 H2O g / SiO2 g,非常適合作為吸附式致冷機之吸附劑。
    Table of Content 目錄
    摘要........................................ I
    誌謝....................................... II
    目錄......................................III
    圖目錄...................................V
    表目錄................................ VII
    第1 章 緒論...................................... 1
    1-1 背景................................1
    1-2 中孔材料發展................1
    1-3 MCM-41 合成機制........4
    1-3.1 界面活性劑與自我組裝................................................4
    1-3.2 矽酸鹽與界面活性劑交互作用......................................7
    1-3.3 液晶模板機制.................................................9
    1-4 MCM-41 孔徑控制與研究方向.............................................14
    第2 章 中孔二氧化矽合成......................... 17
    2-1 藥品與儀器..................17
    2-2 由密質矽酸鹽寡聚物製備中孔二氧化矽................................18
    2-2.1 以Sodium silicate 為矽源........................................18
    2-2.2 以TEOS 為矽源.....................................................20
    2-3 由矽酸鹽寡聚物製備中孔二氧化矽.......................................22
    2-3.1 以Sodium silicate 為矽源.......................23
    2-3.2 以TEOS 為矽源.......................................30
    2-4 由矽酸單體製備中孔二氧化矽....................................31
    2-5 儀器分析..............................................33
    第3 章 結果與討論............................... 39
    3-1 TEOS 矽源前驅液之研究.......................................39
    3-1.1 溶膠凝膠(Sol-gel)法........................................39
    3-1.2 TEOS 之水解與縮合.............................................41
    3-2 矽酸鈉矽源前驅液之研究.........................................43
    3-3 以密質矽酸鹽寡聚物製備中孔二氧化矽之條件............................45
    3-4 以矽酸鹽寡聚物製備中孔二氧化矽之條件......................51
    3-5 以矽酸單體製備中孔二氧化矽之條件..................................63
    3-6 綜合討論.......................................................67
    第4 章 合成固體吸附式致冷機吸附劑............... 71
    4-1 固體吸附式致冷機............................................71
    4-2 文獻回顧.....................................................75
    4-2.1 多孔二氧化矽吸附原理....................................75
    4-2.2 商用吸附式致冷機吸附劑...................................76
    4-2.3 水氣吸附模型與理論....................................77
    4-2.4 超微孔二氧化矽合成......................................80
    4-2.5 親水性表面改質.............................................82
    4-3 吸附劑合成與表面改質.........................................82
    4-3.1 鍍膜液製作..............................................84
    4-3.2 吸附劑合成..............................................85
    4-3.3 吸附劑表面改質........................................89
    4-4 水氣吸附效能檢測.........................................90
    第5 章 結論..................................... 94
    5-1 MCM-41 之孔徑控制.......................................94
    5-2 吸附式致冷機吸附劑...................................95
    參考文獻...................................................97
    附錄............................................103
    Reference 1. Luo, Y.; Lu, G. Z.; Guo, Y. L.; Wang, Y. S. Catalysis Communications 2002, 3(3), 129-134.
    2. Gerstberger, G.; Anwander, R. Microporous and Mesoporous Materials 2001, 44 303-310.
    3. Yuliarto, B.; Zhou, H. S.; Yamada, T.; Honma, I.; Asai, K. Chemphyschem 2004, 5(2), 261-265.
    4. Wu, C. G.; Bein, T. Chemistry of Materials 1994, 6(8), 1109-1112.
    5. Horcajada, P.; Ramila, A.; Perez-Pariente, J.; Vallet-Regi, M. Microporous and Mesoporous Materials 2004, 68(1-3), 105-109.
    6. Ramila, A.; Munoz, B.; Perez-Pariente, J.; Vallet-Regi, M. Journal of Sol-Gel Science and Technology 2003, 26(1-3), 1199-1202.
    7. Doshi, D. A.; Huesing, N. K.; Lu, M. C.; Fan, H. Y.; Lu, Y. F.; Simmons-Potter, K.; Potter, B. G.; Hurd, A. J.; Brinker, C. J. Science 2000, 290(5489), 107-111.
    8. Wilson, S. T.; Lok, B. M.; Messina, C. A.; Cannan, T. R.; Flanigen, E. M. Journal of the American Chemical Society 1982, 104(4), 1146-1147.
    9. Linssen, T.; Cassiers, K.; Cool, P.; Vansant, E. F. Advances in Colloid and Interface Science 2003, 103(2), 121-147.
    10. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; Mccullen, S. B.; Higgins, J. B.; Schlenker, J. L. Journal of the American Chemical Society 1992, 114(27), 10834-10843.
    11. Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Angewandte Chemie-International Edition 1999, 38(1-2), 56-77.
    12. Galarneau, A.; Barodawalla, A.; Pinnavaia, T. J. Nature 1995, 374(6522), 529-531.
    13. Soler-illia, G. J. D.; Sanchez, C.; Lebeau, B.; Patarin, J. Chemical Reviews 2002, 102(11), 4093-4138.
    14. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. Journal of the Chemical Society-Faraday Transactions Ii 1976, 72 1525-1568.
    15. Chen, C. Y.; Burkett, S. L.; Li, H. X.; Davis, M. E. Microporous Materials 1993, 2(1), 27-34.
    16. Chen, C. Y.; Li, H. X.; Davis, M. E. Microporous Materials 1993, 2(1), 17-26.
    17. Steel, A.; Carr, S. W.; Anderson, M. W. Journal of the Chemical Society-Chemical Communications 1994,(13), 1571-1572.
    18. Monnier, A.; Schuth, F.; Huo, Q.; Kumar, D.; Margolese, D.; Maxwell, R. S.; Stucky, G. D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; Janicke, M.; Chmelka, B. F. Science 1993, 261(5126), 1299-1303.
    19. Yanagisawa, T.; Shimizu, T.; Kuroda, K.; Kato, C. Bulletin of the Chemical Society of Japan 1990, 63(4), 988-992.
    20. Vartuli, J. C.; Kresge, C. T.; Leonowicz, M. E.; Chu, A. S.; Mccullen, S. B.; Johnsen, I. D.; Sheppard, E. W. Chemistry of Materials 1994, 6(11), 2070-2077.
    21. Inagaki, S.; Fukushima, Y.; Kuroda, K. Journal of the Chemical Society-Chemical Communications 1993,(8), 680-682.
    22. Firouzi, A.; Kumar, D.; Bull, L. M.; Besier, T.; Sieger, P.; Huo, Q.; Walker, S. A.; Zasadzinski, J. A.; Glinka, C.; Nicol, J.; Margolese, D.; Stucky, G. D.; Chmelka, B. F. Science 1995, 267(5201), 1138-1143.
    23. Frasch, J.; Lebeau, B.; Soulard, M.; Patarin, J.; Zana, R. Langmuir 2000, 16(23), 9049-9057.
    24. Ogura, M.; Miyoshi, H.; Naik, S. P.; Okubo, T. Journal of the American Chemical Society 2004, 126(35), 10937-10944.
    25. Sonwane, C. G.; Bhatia, S. K. Chemical Engineering Science 1998, 53(17), 3143-3156.
    26. Neimark, A. V.; Ravikovitch, P. I.; Grun, M.; Schuth, F.; Unger, K. K. Journal of Colloid and Interface Science 1998, 207(1), 159-169.
    27. Ravikovitch, P. I.; Haller, G. L.; Neimark, A. V. Advances in Colloid and Interface Science 1998, 77 203-226.
    28. Bond, G. C. Heterogeneous Catalysis Principles and Applications; 2 ed.; Oxford science: 1990.
    29. Brinker, C. J.; Scherer, G. W. Sol-Gel Science The Physics and Chemistry of Sol-Gel Processing; Harcourt Brace Jovanovich: 1990.
    30. Charles, F. B. The Hydrolysis of Cations; Krieger: 1990.
    31. Svensson, I. L.; Sjoberg, S.; Ohman, L. O. Journal of the Chemical Society-Faraday Transactions I 1986, 82 3635-3646.
    32. Sjoberg, S. Journal of Non-Crystalline Solids 1996, 196 51-57.
    33. Igarashi, N.; Koyano, K. A.; Tanaka, Y.; Nakata, S.; Hashimoto, K.; Tatsumi, T. Microporous and Mesoporous Materials 2003, 59(1), 43-52.
    34. Kruk, M.; Jaroniec, M.; Sakamoto, Y.; Terasaki, O.; Ryoo, R.; Ko, C. H. Journal of Physical Chemistry B 2000, 104(2), 292-301.
    35. Kruk, M.; Jaroniec, M.; Kim, J. H.; Ryoo, R. Langmuir 1999, 15(16), 5279-5284.
    36. Kruk, M.; Jaroniec, M.; Sayari, A. Journal of Physical Chemistry B 1997, 101(4), 583-589.
    37. Lin, H. P.; Cheng, S. F.; Mou, C. Y. Microporous Materials 1997, 10(1-3), 111-121.
    38. Carrott, M. M. L. R.; Candeias, A. J. E.; Carrott, P. J. M.; Unger, K. K. Langmuir 1999, 15(26), 8895-8901.
    39. Sayari, A.; Yang, Y. Journal of Physical Chemistry B 2000, 104(20), 4835-4839.
    40. Nooney, R. I.; Thirunavukkarasu, D.; Chen, Y. M.; Josephs, R.; Ostafin, A. E. Langmuir 2003, 19(18), 7628-7637.
    41. Lin, H. P.; Kao, C. P.; Mou, C. Y.; Liu, S. B. Journal of Physical Chemistry B 2000, 104(33), 7885-7894.
    42. Voegtlin, A. C.; Matijasic, A.; Patarin, J.; Sauerland, C.; Grillet, Y.; Huve, L. Microporous Materials 1997, 10(1-3), 137-147.
    43. Kruk, M.; Asefa, T.; Jaroniec, M.; Ozin, G. A. Journal of the American Chemical Society 2002, 124(22), 6383-6392.
    44. Liu, S. Q.; Cool, P.; Collart, O.; Van der Voort, P.; Vansant, E. F.; Lebedev, O. I.; Van Tendeloo, G.; Jiang, M. H. Journal of Physical Chemistry B 2003, 107(38), 10405-10411.
    45. Lin, Y. S.; Lin, H. P.; Mou, C. Y. Microporous and Mesoporous Materials 2004, 76(1-3), 203-208.
    46. Wen-Shih, C. Journal of solar and new ener 2004.
    47. Hans-Martin, H. Fraunhofer-Institut f
    Advisor
  • A.S.T. Chiang(蔣孝澈)
  • Files
  • 92324009.pdf
  • approve in 2 years
    Date of Submission 2005-06-21

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.