Title page for 92324005


[Back to Results | New Search]

Student Number 92324005
Author Huamg-Wei Su(蘇皇維)
Author's Email Address 92324005@cc.ncu.edu.tw
Statistics This thesis had been viewed 2039 times. Download 457 times.
Department Chemical and Materials Engineering
Year 2004
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title The diffusion of Cu in the molten eutectic Sn-pb solder with electromigration
Date of Defense 2005-06-16
Page Count 85
Keyword
  • Cu
  • diffusion
  • Electromigration
  • molten solder
  • Abstract In this study, we used the『Cu / Molten SnPb / Cu』structure to investigate the polarity effect of electromigration. By the result, we found that electronic current will accelerate the diffusion behavior of Cu in molten solder severely.
      The experiment condition was including two parts, which was “liquid-state reaction” and “solid-state reaction”. In liquid-state reaction, the sample was annealed at 230 °C with and without current stressing. In solid reaction, the sample was annealed at 160 °C with and without current stressing. Here the current density was 7.2 x 103 A/cm2. By the observation of the result, we compared the polarity effect of electromigration on the thickness of intermetallic compound (IMC) formation and the dissolution of Cu at the cathode and the anode site.
      In the Cu / molten SnPb / Cu system of electromigration, the rapid dissolution of Cu at the cathode site and the plenty formation of IMC at the anode site was found obviously. It was concluded that Cu atoms were dissolved quickly into the molten solder, and the dissolved Cu atoms were driven to the anode side by electronic current immediately.
      In addition, we reduced the experiment temperature to 160 °C and take the solid sample under current stressing. Electromigration indeed affects the formation of IMC at the anode and the cathode site. It enhances the growth of IMC at the anode side and inhibits the growth at the cathode side when compared with the no-current case. As the time of current stressing increased, the propagation of Pb-rich phase was found at the anode side. This is because Pb is the dominant diffusing species at temperatures above 120 °C.
    Table of Content 目錄
                                
    中文摘要...................................................Ⅰ
    英文摘要...................................................Ⅱ
    目 錄......................................................Ⅲ
    圖 目 錄...................................................Ⅴ
    表 目 錄...................................................Ⅶ
    第 一 章 緒論
    1.1 微電子構裝技術......................................... 1
    1.2 研究動機............................................... 5
    第 二 章 文獻回顧
    2.1 電遷移之動力學通式..................................... 6
    2.2 早期導線端之電遷移的研究............................... 9
    2.3 銲料中的電遷移現象..................................... 12
    2.3.1 薄膜合金銲料(Solder stripe)之電遷移研究............ 12
    2.3.2 V 型銲料線路(Solder line)之電遷移研究............. 13
    2.3.3 覆晶銲點(Flip chip)之電遷移研究.................... 15
    (一) 共晶SnPb與無鉛SnAgCu銲點之電遷移現象.................. 15
    (二) 覆晶銲點之電流聚集(Current crowding)效應.............18
    (三) 97Pb/3Sn & 37Pb/63Sn 複合凸塊之電遷移現象 .......... 21
    2.3.4 電遷移導致快速Cu溶解之失效機制...................... 23
    2.4 鋁導線與銲料電遷移發生的臨界電流密度差異............... 25
    2.5 電遷移對界面反應的影響................................. 27
    第 三 章 實驗方法與步驟
    3.1 實驗試片的製作......................................... 29
    3.1.1 銅導線的前處理....................................... 29
    3.1.2 微量毛細管內銲料的填入............................... 30
    3.1.3 銅導線與銲料的接合................................... 30
    3.2 加熱通電實驗裝置....................................... 33
    3.3 試片之處理、觀察及分析................................. 36
    第 四 章 實驗結果與討論(Ⅰ)
    -熔融SnPb銲料與銅通電與未通電之反應-
    4.1 熔融SnPb銲料與銅的通電現象............................. 39
    4.1.1不同通電時間下試片型態之變化.......................... 39
    4.1.2 陰極與陽極端銅的消耗量............................... 43
    4.2 不通電下熔融SnPb與Cu的界面反應......................... 45
    4.2.1不同反應時間下試片型態之變化.......................... 45
    4.2.2 銅導線的消耗量....................................... 49
    4.3 液態通電與液態熱處理之比較與討論....................... 51
    第 五 章 實驗結果與討論(Ⅱ)
    -固態SnPb銲料與銅通電與未通電之反應-
    5.1 固態SnPb銲料與銅的通電現象............................. 57
    5.2 固態通電與固態熱處理界面端介金屬生長的比較............. 63
    5.3 固態與液態銲料通電反應之比較........................... 68
    第 六 章 結論 ............................................ 72
    參考文獻................................................... 74
    Reference 參考文獻
    1.Y. H. Lin, C. M. Tsai, Y. C. Hu, Y.L. Lin, C. R. Kao, J. Electron. Mater., 34 (1), 27-33, (2005).
    2.Y. C. Hu, Y. H. Lin, C. R. Kao, K.N. Tu, J. Mater. Res., 18 (11), 2544- 2548, (2003).
    3.陳信文、陳立軒、林永森、陳志銘著『電子構裝技術與材料』
    4.E. M. Davis, W. E. Harding, R. S. Schwartz, and J. J. Corning, IBM J. Res. Develop., 8, 102, (1964).
    5.D. P. Seraphim, R. C. Lasky, and C-Y. Li, “Principle of Electronic Package ”, McGraw-Hill, New York, (1993).
    6.J. H. Lau, “Flip Chip Technologies ”, McGraw-Hill, New York, (1996).
    7.J. H. Lau, “Low cost flip chip technologies: for DCA, WLCSP, and PBGA assemblies ”, McGraw-Hill, New York, (2002).
    8.P. A. Totta, S. Khadpe, N. G. Koopman, T. C. Reiley, and M. J. Sheaffer, in “Electronics Packaging Handbook ” edited by R.R. Tummala, E. J. Rymaszewski, and A. G. Klopfenstein, Chapman New York, (1999).
    9.http://www.amkor.com/enablingtechnologies/FlipChip/
    10.The International Roadmap for semiconductor Technology, Semiconductor Industry Association : 2003 edition
    11.The International Roadmap for semiconductor Technology, Semiconductor Industry Association : 2004 update
    12.V. B. Fiks, Sov. phys., Solid state., 1, 14-28, (1959).
    13.H. B. Huntington, and A. R. Grone, J. Phys. Chem. Solids, 20, 76-87, (1961).
    14.K. N. Tu, J. W. Mayer, and L. C. Feldman, Pearson Education POD, 355, (1996).
    15.K. N. Tu, Physical Review B, 45, 3, 1409, (1992)
    16.I. A. Blech, J. Appl. Phys., 47, 1203, (1976).
    17.I. A. Blech, and C. Herring, Appl. Phys. Lett., 29, 131, (1976).
    18.H. B. Huntington, in “Diffusion in Solids: Recent Developments ”, edited by A. S. Nowick and J. J. Burton, Academic Press, New York, 303-352, (1975).
    19.J. R. Black, IEEE Trans. On Electron Devices, ED-16, 348, 1969.
    20.K. N. Tu, J. Appl. Phys., 94, 1, (2003).
    21.F. M. d”Heurle, and P. S. Ho, “Electromigration in thin films,” in “Thin film; Interdiffusion and reactions,” (p. 243), edited by J. M. Poate, K. N. Tu, and J. W. Mayer, Wiley-Interscience, New York (1978).
    22.C. Y. Liu, C. Chen, C. N. Liao, and K. N. Tu, Appl. Phys. Lett., 75, 58, (1999).
    23.C. Y. Liu, Chin Chen, and K. N. Tu, J. Appl. Phys., 88, 5703, (2000).
    24.Jae-Young Choi, Sang-Su Lee, and Young-Chang Joo, Jpn. Appl. Phys., 41, 7487, (2002).
    25.Jae-Young Choi, Sang-Su Lee, Jong-Min Paik, and Young-Chang Joo, IEEE Electronic Materials and Packaging, 417-420, (2001).
    26.Q. T. Huynh, C. Y. Liu, C. Chen, and K. N. Tu, J. Appl. Phys., 89, 4332, (2001).
    27.H. Gan, W. J. Choi, G. Xu, and K. N. Tu, JOM, 6, 34, (2002).
    28.T. Y. Lee, K. N. Tu, S. M. Kuo, and D. R. Frear, J. Appl. Phys., 89, 3189, (2001).
    29.T. Y. Lee, K. N. Tu, and D. R. Frear, J. Appl. Phys., 89, 4502, (2001).
    30.Ying-Chao Hsu, Tung-Liang Shao, Ching-Jung Yang, and Chin Chen, J. Electron. Mater., 32 (11), 1222, (2003).
    31.W. J. Choi, E. C. C. Yeh, and K. N. Tu, J. Appl. Phys., 94, 5665, (2002).
    32.E. C. C. Yeh, W. J. Choi, and K. N. Tu, P. Elenius, and H. Balkan, Appl. Phys. Lett., 80, 580, (2002).
    33.J. W. Nah, and K. W. Paik, J. Appl. Phys., 94, 7560, (2003).
    34.Jae-Woong Nah, Jong Hoon Kim, Hyuck Mo Lee, Kyung-Wook Paik, Acta Materialia, 52, 129, (2004).
    35.Yeh-Hsiu Liu and Kwang-Lung Lin, Damages and Microstructural Variation of 5Sn-95Pb Flip Chip Solder Bumps Induced by Electromigration, unpublished, (2005).
    36.W. C. Liu, S. W. Chen, and C. M. Chen, J. Electron. Mater., 27 (1), L5-L8, (1998).
    37.S. W. Chen, C. M. Chen, and W. C. Liu, J. Electron. Mater., 27 (11), 1193, (1998).
    38.C. M. Chen, and S. W. Chen, J. Electron. Mater., 28 (7), 902, (1999).
    39.C. M. Chen, and S. W. Chen, J. Electron. Mater., 29 (10), 1222, (2000).
    40.C. M. Chen, and S. W. Chen, J. Appl. Phys., 90, 1208, (2001).
    41.C. M. Chen, and S. W. Chen, Acta Materialia, 50 (9), 2461, (2002).
    42.S. W. Chen, and C. M. Chen, JOM, 55, 62, (2003).
    43.C. M. Chen, and S. W. Chen, J. Mater. Res., 18 (6), 1293, (2003).
    44.M. Y. Du, C. M. Chen, and S. W. Chen, Mater. chem. Phys., 82 (3), 818, (2003).
    45.H. Gan, W. J. Choi, G. Xu, and K. N. Tu, JOM, 6, 34, (2002).
    46.H. Gan, and K. N. Tu, in Proceedings of 52nd Electronic Components and Technology Conference San Diego, CA, 1206, (2002). 
    47.H. Gan, G. Xu, and K. N. Tu, in Proceedings of 52nd Electronic Components and Technology Conference New Orleans, LA , 71, (2003). 
    48.H. Gan, and K. N. Tu, J. Appl. Phys., 97, 065514, (2005).
    49.K. N. Tu, and K. Zeng, Materials Science and Engineering R, 34, 1-58, (2001).
    50.K. H. Prakash, and T. Sritharan, Acta Materialia, 49, 2481, (2001).
    51.H. K. Kim, and K. N. Tu, Phys. Rev. B, 53, 16027, (1996).
    52.K. N. Tu, T. Y. Lee, J. W. Jang, L. Li, D. R. Frear, K. Zeng, and J. K. Kivilahti, J. Appl. Phys., 89, 4843, (2001).
    53.H. K. Kim, H. K. Liou, and K. N. Tu, J. Mater. Res., 10, 497, (1995).
    54.Matt Schaefer, Raymond A., Fournelle, and Jim liang, J. Electron. Mater., 27 (11), 1167, (1998)
    55.H. K. Kim, H. K. Liou, and K. N. Tu, Appl. Phys. Lett., 66, 2337, (1995).
    56.H. K. Kim, and K. N. Tu, Appl. Phys. Lett., 67, 2002, (1995).
    57.K. N. Tu, and R. D. Thompson, Acta Metall., 30, 947, (1981).
    58.Kejun Zeng, Roger Stierman, Tz-Cheng Chiu, Darvin Edwards Kazuaki Ano, and K. N. Tu, J. Appl. Phys., 97, 024508, (2005).
    59.D. Gupta, K. Vieregge, and W. Gust, Acta Metall., 47, 5, (1999).
    60.T. Y. Lee, W. J. Choi, and K. N. Tu, J. Mater. Res., 17, 291, (2002).
    61.Y. S. Lai, and C. L. Kao, “Numerical Investigation of Current Crowding in Flip-chip Bumps”, IMAPS-Taiwan, (2004).
    Advisor
  • C. R. Kao(高振宏)
  • Files
  • 92324005.pdf
  • approve immediately
    Date of Submission 2005-06-27

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.