Title page for 92322033


[Back to Results | New Search]

Student Number 92322033
Author Ping-Hung Ku(古秉弘)
Author's Email Address 92322033@cc.ncu.edu.tw
Statistics This thesis had been viewed 1779 times. Download 802 times.
Department Civil Engineering
Year 2005
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Study of the sound wave transmission and measuring in sand layer
Date of Defense 2005-06-30
Page Count 133
Keyword
  • cone resistance
  • root mean square of sound pressure
  • sand slide
  • sound wave propagation
  • Abstract According to the results of past researches about acoustic cone, it is understood that the acoustic cone can be used to measure cone resistance and root mean square of sound pressure. It is also found that the acoustic cone is sensitive in measuring small sound wave due to a small variation in ground. This research used the measuring technique of sound to record the sound waves in soil during slide. In the future, this technique may be expected to establish a monitoring system for recording small variation of soil behaviors.
    This research measured the Acoustic Emission (AE) of soil during the penetration of cone tip in the testing chamber and realized some basic characteristics of soil. In addition, a sound wave propagation test was conducted in the test pit to realize the sound wave transmission in sand layer. Finally, a sand slide model test was performed to simulate the movement of retaining wall and the sound signals were recorded during the slide of sand.
    From the results of experiments, it is found that the cone resistance, the root mean square of sound pressure and AE rate increased with the increase of relative density and overburden pressure. Increase the relative density of sand can increase the cone resistance and the root mean square of sound pressure effectively. The amplitude of sound wave will decrease gradually during the transmission in loose sand layer and the root mean square of sound pressure will decrease in inverse proportion with the increase of distance from sound source. From the results of ACPT, the major frequency of sound signals is located at the range of 2~4.5kHz, and for sand slide model test, it located at 5Hz. These experimental results show that the sound signal with high frequency will be generated due to the bump of sand particles during the penetration of cone tip. However, the sound signal with low frequency will be generated during the sand slide under the condition of unloading.
    Table of Content 中文摘要  I
    英文摘要 II
    目錄III
    照片目錄VII
    表目錄VIII
    圖目錄IX
    符號說明XIV
    第一章 緒論1
    1.1 研究動機與目的1
    1.2 研究方法2
    1.3 論文內容2
    第二章 文獻回顧3
    2.1 圓錐貫入試驗3
    2.1.1 概述3
    2.1.2 圓錐貫入試驗之影響因素3
    2.1.3 圓錐貫入試驗之工程應用5
    2.1.3.1 計算基樁之承載力5
    2.1.3.2 土壤分類與研判6
    2.1.3.3 液化潛能評估9
    2.2 室內模型槽試驗12
    2.2.1 模型槽試驗之發展與應用12
    2.2.2 模型試體邊界條件之控制13
    2.2.3 模型土槽邊界效應之評估14
    2.3 聲音量測技術在大地工程之應用15
    2.3.1 聲音之基本原理15
    2.3.2 音射現象16
    2.3.3 聲音傳播之特性17
    2.3.4 聲音訊號之物理量表示方法18
    2.3.5音波訊號之分析20
    2.3.5.1 時間域分析20
    2.3.5.2 頻率域分析21
    2.3.6 音波訊號之應用21
    2.3.6.1 音波於土壤力學上之應用21
    2.3.6.2 音波訊號於不穩定邊坡上之量測22
    2.3.6.3 微音錐貫入試驗23
    2.3.6.4 土石流地聲特性之研究25
    第三章 試驗土樣、儀器設備及試驗方法44
    3.1 試驗土樣44
    3.2 試驗儀器與相關設備44
    3.2.1 圓桶形土槽均勻砂土貫入試驗設備44
    3.2.2 現地砂土層中音波傳遞之量測設備51
    3.2.3 擋土牆後砂土滑動之音波量測設備52
    3.3 試驗方法與步驟53
    3.3.1 微音錐基本測試53
    3.3.2 最大與最小乾單位重試驗54
    3.3.3 圓桶形土槽均勻砂土貫入試驗方法56
    3.3.4 現地砂土層中音波傳遞之量測方法57
    3.3.5 擋土牆後砂土滑動之音波量測方法58
    3.4 音波訊號之處理59
    3.4.1 背景噪音之影響與校正60
    3.4.2 背景噪音之濾除61
    3.4.3 取樣定理61
    3.4.4 門檻值設定62
    3.4.5 快速傅立葉轉換62
    第四章 試驗結果與分析86
    4.1 圓桶形土槽均勻砂土貫入試驗86
    4.1.1 錐尖阻抗之探討86
    4.1.2 音波訊號之探討88
    4.1.2.1 背景噪音之濾除88
    4.1.2.2 均方根音壓之分析90
    4.1.2.3 音射發生率之分析92
    4.1.2.4 頻譜分析94
    4.2現地砂土層中音波傳遞之量測94
    4.2.1 均方根音壓之分析95
    4.3 擋土牆後砂土滑動之音波量測97
    4.3.1 背景噪音之濾除97
    4.3.2 音壓振幅之分析98
    4.3.3 均方根音壓之分析99
    4.3.4 音射數之分析100
    4.3.5 頻譜分析101
    第五章 結論與建議126
    5.1 結論126
    5.2 建議127
    參考文獻128
    Reference 1.土質工學會,土質試驗法,日本土質工學會,第172-188頁(1976)。
    2.王志偉,「微音錐應用於土壤音射特性之研究」,碩士論文,國立中央大學土木工程學系,中壢 (2002)。
    3.方治國,「音洩檢測原理應用」,檢測科技,第十六卷,第一期,第4-9頁(1998)。
    4.徐萬樁,噪音與振動控制,協志工業叢書,台北(1984)。
    5.黃清哲、謝正倫、鄭友誠、尹孝元、許世盛、蔡玫諼,「中國土木水利工程學刊」,第十六卷,第一期,第53-63頁 (2004)。
    6.莊傳業,「微震音放射在圓錐貫入試驗中之應用」,碩士論文,國立中央大學土木工程學系,中壢(1996)。
    7.陳文泓,「利用生石灰樁處理飽和粘性土層之研究」,碩士論文,國立中央大學土木工程學系,中壢(1987)。
    8.葉逸彬,「圓錐貫入試驗中砂土音射特性之研究」,碩士論文,國立中央大學土木工程學系,中壢(2004)。
    9.趙晉棠,通信原理,全華科技圖書股份有限公司,台北(1995)。
    10.蘇德勝,噪音原理及控制,臺隆書店,台北(2000)。
    11.Anderson, W.F., and Pyrah, I.C., “Presssuremeter testing in a clay calibration chamber,” Proceedings of the First International Symposium on Calibration Chamber Testing/ISOCCT1, Potsdam, New York, pp. 55-66 (1991).
    12.Andrus, R.D., and Stokoe, K.H., “Liquefaction resistance of soils based on shear wave velocity,” Journal Geotechnical Engineering, Vol. 126, No. 11, pp. 1015-1026 (1997).
    13.ASTM D3441-86, “Standard Test Method for Deep Quasi-Static Cone and Friction-Cone Penetration Test of Soil,” Annual book of ASTM Standards, Vol. 4, No. 8 (1986).
    14.Beard, F.D., “Predicting Slides in Cut Slopes,” Western Construction, pp. 72 (1961).
    15.Begemann, H.K., “The Friction Jacket Cone as an Aid in Determining the Soil Profile,” Proceedings 6th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, pp. 17-20 (1965).
    16.Dixon, N., Hill, R., and Kavanagh, J., “Acoustic Emission Monitoring of Slope Instability : Development of an Active Waveguide System,” Proceedings of the Institution of Civil Engineers : Geotechnical Engineering, Vol. 156, No. 2, pp. 83-95 (2003).
    17.Douglas, B.J., and Olsen, R.S., “Soil classification using electric cone penetrameter,” Symposium on Cone Penetration Testing and Experience, Geotechnical Engineering Division, ASCE, OCT., St. Louis, pp. 209-227 (1981).
    18.Ghionna, V.N., and Jamiolkowski, M., “A critical appraisal of calibration chamber testing of sands,” Proceedings of the First International Symposium on Calibration Chamber Testing/ISOCCT1, An-Bin Huang, Ed., Potsdam, New York, pp. 13-40 (1991).
    19.Hardy, H.R., “Application of acoustic techniques to rock mechanics research,” Acoustic Emission, ASTM STP505, American Society for Testing and Materials, pp. 41-83 (1972).
    20.Hardy, H.R. Jr., “Application of acoustic emission techniques to rock and rock structures: a state of the art review,” Acoustic Emission in Geotechnical Engineering Practice, ASTM STP750, American Society for Testing and Materials, pp. 4-92 (1981).
    21.Holden, J.C., “Laboratory research on static cone penetrometers,” University of Florida, Gainsville, Department of Civil Engineering, Internal Report, CE-SM-71-1 (1971).
    22.Holden, J.C., “History of the first six CRB calibration chamber,” Proceedings of the First International Symposium on Calibration Chamber Testing/ISOCCT1, Potsdam, New York, pp. 1-12 (1991).
    23.Houlsby, G.T., and Hitchman, R., “Calibration chamber tests of a cone penetrometer in sand,” Geotechnique, Vol. 38, No. 1, pp. 39-44 (1988).
    24.Juang, C.H., and Jiang, T., “Assessing probabilistic methods for liquefaction potential evaluation,” Soil Dynamics and Liquefaction, ASCE, pp. 148-162 (2000).
    25.Juang, C.H., Chen, C.J., and Jiang, T., “Probabilistic framework for liquefaction potential by shear wave velocity,” Journal of Geotechnical Engineering, ASCE, Vol. 127, No. 8, pp. 670-678 (2001).
    26.Koerner, R.M., McCabbe, W.M., and Lord, A.E., “Acoustic Emission Behavior and Monitoring of Soils,” Acoustic Emission in Geotechnical Engineering Practice, ASTM STP 750, American Society for Testing and Materials, pp. 93-141 (1981).
    27.Liao, T., Mayne, P.W., Tuttle, M.P., Schweig, E.S., and Van Arsdale, R. B., “CPT site characterization for seismic harzards in the new madrid seismic zone,” Soil Dynamics and Earthquake Engineering, Vol. 22, pp. 943-950 (2002).
    28.Lord, H., Gatley, W.S., and Evensen, H.A., “Noise Control for Engineers,” McGraw-Hill Inc (1980).
    29.Massarsch, K.R., “Acoustic penetration testing,” Proceedings of the 4th Geotechnical Seminar, Field Instrumentation and In-Situ Measurements, Nanyang Tech. Inst., Singapore (1986).
    30.Meigh, A.C., “Cone penetration testing: methods and interpretation,” CIRIA ground engineering report : in-situ testing, Butterworths, London (1987).
    31.Melzer, K.J., “Sondenunterschungen in sand,” D. Dissertation, Technichen Hochschule Aachen (1968).
    32.Muromachi, T., “Phono-sounding apparatus-discrimination of soil type by sound,” Proceedings of the First European Symposium on Penetuation Testing, Amsterdam, ESOPT-I, Vol. 21, pp. 110-112 (1974).
    33.Olsen, R.S., and Mitchell, J.K., “CPT stress normalization and predication of soil classification,” Proceedings of the International Symposium on Cone Penetration Testing-CPT䚯, Linkoping, Sweden, October (1995).
    34.Parkin, A.K., and Lunne, L., “Boundary Effects in the Laboratory Calibration of a Cone Penetrometer for Sand,” Proceedings of the Second European Symposium on Penetration Testing, Amsterdam, ESOPT-II, pp. 761-768 (1982).
    35.Parkin, A.K., “The calibration of cone penetration,” Proceedings of the First International Symposium on Penetration Testing/ISOPT1, Orlando, Florida, pp. 221-243 (1988).
    36.Robertson, P.K., “In situ testing and its application to foundation engineering,” Canadian Geotechnical Journal, No. 23, pp. 573-594 (1986).
    37.Robertson, P.K., “Soil classification using the cone penetration test,” Canadian Geotechnical journal, No. 27, pp. 151-158 (1990).
    38.Robertson, P.K., and Wride, C.E., “Evaluating cyclic liquefaction potential using the cone penetration test,” Canadian Geotechnical Journal, Vol. 35, No. 3, pp. 442-459 (1998).
    39.Ronnie, K.M., and Paul, McIntire., “Acoustic emission testing,” Nondestructive Testing Handbook, 2nd Ed., Vol. 5 (1986).
    40.Salgado, R., Mitchell, J.K., and Jamiolkowski, M., “Cavity expansion and penetration resistance in sand,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 4, pp. 344-354 (1998).
    41.Scott, I.G., “Basic acoustic emission,” Nondestructive Testing Monographs Tracts, Vol. 6, Gordon and Breach Science Publishers (1991).
    42.Schmertmann, J.H., “Guidelines for cone penetration test, performance and design,” Federal Highway Administration, Report FHWA-TS-78- 209 (1978).
    43.Seed, H.B., and Idriss, I.M., “Simplified procedure for evaluating soil liquefaction potential,” Journal Soil Mechanics Foundations Division, Vol. 97 No. 9, pp. 1249-1273 (1971).
    44.Spanner, J.C., Brown, A., Hay, D.R. Notvest, K., and Plooock, A., “Foundationals of acoustic emission testing,” Nondestructive Testing Handbook, 2nd Ed., Vol. 5, pp. 11-44 (1987).
    45.Tcheng, Y., “Foundations profonds en milieu pulverulent a diverses compacities,” Annales de I'Institut Technique du Batiment et des Travaux Publics, Sols et Fondations 54, pp. 219-220 (1966).
    46.Tringale, P.T., “Soil identification in-situ using an acoustic cone penetrometer,” Ph.D. Dissertation, University of California, Berkeley (1983).
    47.Veismanis, A.S., “Laboratory investigation of electrical friction-cone penetrometers in sand,” Proceedings of European Symposium on Penetration Testing, ESOPT-I, Stockholm, Vol. 2.2 (1974).
    48.Villet, W.C.B., “Acoustic emission during the static penetration of soils,” Ph.D. Dissertation, University of California, Berkeley (1981).
    49.Worth, C.P., “Interpretation of In Situ Soil Test,” 24th Rankine Lecture, Geotechnique, Vol. 34, pp. 449-489 (1984).
    Advisor
  • Huei-When Chang(張惠文)
  • Files
  • 92322033.pdf
  • approve immediately
    Date of Submission 2006-06-16

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.