Title page for 91625007


[Back to Results | New Search]

Student Number 91625007
Author Ching-Rung Wu(吳季蓉)
Author's Email Address s8725068@yahoo.com.tw
Statistics This thesis had been viewed 2358 times. Download 726 times.
Department Hydrological Sciences
Year 2004
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Analysis of Depth-Dependent Pressure Head of Slug Tests in Highly Permeable Aquifers
Date of Defense 2005-05-12
Page Count 83
Keyword
  • data analysis
  • depth-dependent pressure head
  • highly permeable aquifers
  • slug test
  • Abstract Abstract
    Analysis of pressure head of slug Tests in highly permeable aquifers. Slug tests have two conditions in the well. Partially submerged is the static water table located in the screen and sand pack. Fully submerged is the static water table is situate above both the screen and sand pack. The recharge curve exhibits log-liner form partially submerged screen and sand pack conditions. The effective length of screen changed follow time, need using applicable model to correcting pressure head. If is not to correct pressure head, horizontal hydraulic conductivity will be underestimated 28%. When a curve exhibits down-concave, express what the effective length of screen changed too much follow time. It is suggested that the initial well water displacement be less and the pressure transducer is placed at depth not close to the well bottom. At fully submerged conditions, a curve matching method is presented for the analysis of oscillatory pressure head that is dependent on depth. The Springer and Gelhar (1991) solution and a depth correction relation are used to generate dimensional type curves of pressure head versus time. A trial-and-error procedure is established to find the type curve best fitting the field data by adjusting the two unknown parameters, the horizontal hydraulic conductivity and the effective length of well water column. Analytical relations for some oscillation characteristics of the converted pressure head are derived, and they are useful in checking accuracy of the estimates. A field example is given to demonstrate this curve matching method, and it indicates that the true initial well water displacement is important to the data analysis. It is suggested that the actual initial well water displacement be determined, especially when the pressure transducer is placed at depth not close to the initial well water level.
    Table of Content 目錄
    目錄I
    圖目錄III
    表目錄VI
    符號說明VII
    第一章 序論1
    1.1背景1
    1.2 實驗場址介紹9
    1.3 研究目的11
    第二章 微水實驗分析模式18
    2.1 部分浸水狀態分析模式19
    2.1.1 部分浸水無濾料補水19
    2.1.2 部分浸水且濾料補水20
    2.2 全部浸水狀態振盪分析模式26
    2.2.1 暫態振盪分析模式28
    2.2.2 類靜態振盪分析模式31
    2.2.3 深度修正分析模式32
    2.2.4 討論33
    第三章 部分浸水狀態水位壓力資料分析37
    3.1 壓力曲線資料分析37
    3.1.1 下凹曲線特徵分析40
    3.1.2 非線性反應43
    3.2建立經驗誤差修正關係並推估水力導數46
    3.2.1比較Bouwer and Rice Method與Dagan Method分析誤差49
    3.3 結果與討論51
    第四章 深度修正解析解模式建立54
    4.1 求解方法與步驟54
    4.2 模式分析與討論56
    4.2.1 Le敏感度分析59
    4.2.2 ?敏感度分析59
    4.3 建立深度修正標準曲線疊套方法59
    第五章 全部浸水狀態振盪曲線資料分析62
    5.1振盪曲線分析62
    5.2比較不同模式分析結果差異69
    5.3結果與討論73
    第六章 結論與建議75
    參考文獻76
    附錄 A79
    附錄 B83
    圖目錄
    圖1.1a 受壓含水層微水實驗理想狀態概念模式3
    圖1.1b 非受壓含水層微水實驗理想狀態概念模式3
    圖1.2 非受壓含水層部分浸水概念模式4
    圖1.3 低滲透性含水層微水實驗特徵曲線 (Bouwer and Rice,1976)5
    圖1.4a 台灣南部高雄煉油廠苓站井SV-0410
    圖1.4b 台灣南部高雄煉油廠苓站井體構造與壓力計位置示意圖10
    圖1.5 SV-04第一組資料、w0=0.474m;z=0.56、2.03及4.06m三個不同的深度。12
    圖1.6 SV-04第二組資料、w0=0.749m;z=2.03及4.06m不同的深度。12
    圖1.7 SV-04第三組資料、w0=1.0m;z=2.03及4.06m不同的深度。13
    圖1.8 SV-04第四組資料、w0=1.0m;z=2.53、3.55及4.57m三個不同的深度。13
    圖1.9 高雄大寮鄉FD-1-20m井體構造示意圖14
    圖1.10 實驗井(FD-1-20m)微水實驗井中動態水壓變化15
    圖1.11 高滲透性含水層微水實驗資料分析流程………………….18
    圖2.1 非受壓含水層部分浸水特徵曲線21
    圖2.2a 非受壓含水層部分浸水且濾料補水第一時態狀態概念模式23
    圖2.2b 非受壓含水層部分浸水且濾料補水第二時態狀態概念模式23
    圖2.3a 第一時態狀態三折線特徵曲線(Binkhorst and Robbins ,1998)24
    圖2.3b 第二時態狀態二折線特徵曲線24
    圖2.4 高滲透性含水層井動態水壓,不同深度量測到不同水頭變化(Zurbuchen et al.,2002)34
    圖2.5 振盪曲線特徵之非線性反應(Zurbuchen et al.,2002)34
    圖2.6 利用線性化模式 值決定,水位面(wd)對應無因次時間(td)之標準曲線(Butler, 1998)。35
    圖3.1 SV-04第一組資料,h(z,t)/w0半對數圖。38
    圖3.2 SV-04第二組資料,h(z,t)/w0半對數圖。38
    圖3.3 SV-04第三組資料,h(z,t)/w0半對數圖。39
    圖3.4 SV-04第四組資料,h(z,t)/w0半對數圖。39
    圖3.5 SV-04第一組資料,h*(z,t)半對數圖。41
    圖3.6 SV-04第二組資料,h*(z,t)半對數圖。41
    圖3.7 SV-04第三組資料,h*(z,t)半對數圖。42
    圖3.8 SV-04第四組資料,h*(z,t)半對數圖。42
    圖3.9 critical damped標準曲線疊套第三組水位壓力資料44
    圖3.10 critical damped標準曲線疊套第三組水位壓力資料半對數圖44
    圖3.11 critical damped標準曲線疊套第四組水位壓力資料45
    圖3.12 critical damped標準曲線疊套第四組水位壓力資料半對數圖45
    圖3.13 低滲透性含水層,井中為靜態水壓不受深度影響。47
    圖3.14 低滲透性含水層壓力計深度20m,線性反應47
    圖3.15 SV-04井、z=2.03m,w0=1.0時出現非線性反應。48
    圖3.16 SV-04井、z=4.06m,w0=1.0時出現非線性反應。48
    圖4.1 比較式(4.4)非線性項(z=4.5m)對於不同w0、Le及?參數的影響57
    圖4.2 已知微水實驗w0=0.3528m,z=4.5m,以Le=10.845m為初始依據,繪製?=0.904s-2、?=0.415對應?’s建立深度修正標準曲線。61
    圖5.1 實驗井(FD-1-20m)微水實驗井中動態水壓變化63
    圖5.2 深度修正標準曲線(?=0.904s-2、?=0.415)疊套微水實驗振盪資料65
    圖5.3 深度修正標準曲線(?=0.660s-2、?=0.303)標準曲線疊套微水實驗振盪資料66
    圖5.4 深度修正標準曲線(?*=0.726s-2、?*=0.333)標準曲線疊套微水實驗振盪資料67
    圖5.5 利用深度修正標準曲線疊套方法分析微水實驗振盪資料,疊合得到一組最佳參數?*=0.726s-2、?*=0.415 (Le=13.5m)、?*=0.315s-1 (Kr=3.85×10-4m/s) 並可獲得hzmax與hzmin的tzk值68
    圖5.6 利用Bouwer and Rice Method分析微水實驗振盪資料70
    圖5.7 利用SG 模式分析微水實驗振盪資料71
    表目錄
    表3.1 Tabulated Values of the Dimensionless Flow Parameter, P, Uesd in Dagan Method for Wells Screened Across the Water Table50
    表3.2 比較利用Bouwer and Rice Method及Dagan Method推估井SV-04的 值結果50
    表3.3 Hydraulic Coductivity of Porous Materials53
    (Adapted from Morris & Johnson, 1967)53
    表3.4. Range of Values of Hydraulic Conductivity and Permeability53
    ( from Davis', 1969)53
    表3.5 Order of magnitude of K for different kinds of rock53
    ( from Bouwer, 1978)53
    表3.6. Representative Values of Hydraulic Conductivity53
    ( from Ground water contamination, p26 )53
    表5.1 利用標準曲線疊套方法獲得之最佳參數,?*=0.726s-2 (Le=13.5m)、?*=0.415、?*=0.315s-1,使用式(3.7)計算當k =1、2、3、4、5、6對應之tzk值表69
    表5.2 模式分析結果誤差73
    Reference 參考文獻
    陳家洵、馬國鳳、陳瑞昇,2004。斷層活動機制及其引發現象與地震潛勢評估研究-台灣西部地區(二之二),經濟部中央地質調查所期末報告書,43-45,63,66頁。
    Abramowitz, M. and I. A.Stegun,1972. Handbook of Mathematical Functions. Dover Publications.
    Binkhorst G. K., and Robbins G. A.,1998. Conducting and Interpreting
    Slug test in Monitoring Wells eith Partially Submerged Screens., Ground Water 36, no.2: 225-229. 
    Boast, C. W., and Kirkham, D., 1971. Auger hole seepage theory , Soil Sci. Soc. Am. Proc.,35, no.3: 365.
    Bouwer, H., and R. C. Rice, 1976. A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resour. Res. 12, no.3: 423 -428.
    Bouwer H., The Bouwer and Rice , 1989. slug test – an update, Ground
    Water 27, no.3:304-309. 
    Butler J. J., Jr., 1998. The Design, Performance, and Analysis of Slug Tests, Boca Raton, Florida: Lewis Publishers.
    Butler J. J., Jr., 2002. A simple correction for slug test in smalldiameter wells. Ground water 40,no.3: 303-307.
    Butler J. J., Jr., E. J. Garnett and J. M. Healey, 2003. Analysis of slug tests in formations of high hydraulic conductivity, Ground Water 41, no.5: 620-630.
    Butler, J. J. Jr., and X. Zhan, 2004. Hydraulic tests in highly permeable aquifers, Water Resour. Res. 40, w12402, doi: 10.1029 / 2003 WR 002998.
    Cooper, H. H., Jr., J. D. Bredehoedft, I. S. Papadopulos, and R. R. Bennett, 1965, The response of well-aquifer systems to seismic waves, J. Geophys. Res. 70: 3915 – 3926.
    Cooper H. H., J. D. Bredehodft, and I. S. Papadopulos, 1967. Response of afinite-diameter well to an instantaneous charge of water, Water Resour. Res..3,no.1:263-269
    Freeze R.A. and J. A. Cherry, 1979.GROUNDWATER, Prentice Hall, Inc.
    Hvorslev M. J., 1951.Time lag and soil permeability in ground-water
    observations, U.S. Army Corps of Engrs. Waterways Exper. Sta. Bull, 36:1-50
    Kabala, Z. J., G. F. Pinder, and P. C. D. Milly, 1985. Analysis of well-aquifer response to a slug test, Water Resour. Res. 21, no.9:1433-1436.
    Kipp, K. L. Jr, 1985. Type curve analysis of inertial effects in the response of a well to a slug test, Water Resour. Res. 21, no.9:1397-1408.
    Kreyszig E., 1983. Advanced Engineering Mathematics, 5th edition, John Wiley and Sons
    Kruseman, G. P. and de Ridder, N. A.,1990. Analysis and Evaluation of Pumping Test Data –ILRI Publication 47, The Netherlands, Int. Inst. for Land Reclamation and Improvement.
    McElwee, C. D., and M. A. Zenner, 1998. A nonlinear model for analysis of slug test data, Water Resour. Res. 34, no.1: 55-66.
    McElwee, C. D., Butler, J. J., Jr., and Bohling, G. C., Nonlinear analysis of slug test in highly permeable aquifers using a Hvorslev-type approach, Kans. Geol. Surv. Open-File Rep. 92-39.1992.
    Springer, R. K., and L. W. Gelhar, 1991. Characterization of large-scale aquifer heterogeneity in glacial outwash by analysis of slug tests with oscillatory response, Cape Cod, Massachusetts. U.S. Geological Survey Water-Resources Investigations Report 91-4034, pp.3-40.
    Van der Kamp, G. 1976. Determining aquifer transmissivity by means of well response tests: The underdamped case, Water Resour. Res. 12, no.1: 71-77
    Wylie, C. R., and L. C. Barrett, 1982. Advanced Engineering Mathematics, 5th edition, McGraw-Hill, Inc.
    Zlotnik, V., 1994.Interpretation of slug and packer tests in anisotropic aquifers, Ground Water 35,no.5: 761. 
    Zlotnik, V. A., and V. L. McGuire, 1998. Multi-level slug tests in highly permeable formations, 1, Modification of the Springer-Gelhar (SG) model, J. Hydrol 204: 271-282.
    Zurbuchen, B. R., V. A. Zlotnik, and J. J. Butler Jr., 2002. Dynamic interpretation of slug test in highly permeable aquifers. Water Resour. Res. 38, no.3: 10.1029/2001 WR000354.
    Advisor
  • Chia-Shyun Chen(陳家洵)
  • Files
  • 91625007.pdf
  • approve immediately
    Date of Submission 2005-06-01

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.