Title page for 91623007


[Back to Results | New Search]

Student Number 91623007
Author Pang-Ta Wang(王邦達)
Author's Email Address No Public.
Statistics This thesis had been viewed 2954 times. Download 1150 times.
Department Graduate Institute of Space Science
Year 2003
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Unsupervised Target Classification and Estimation of The Orientation Angle Shift Using Fully Polarimetric SAR
Date of Defense 2004-05-31
Page Count 90
Keyword
  • Fully Polarimetric SAR
  • Orientation Angle Shift
  • Unsupervised Target Classification
  • Abstract Abstract
    This study included two parts of using fully Polarimetric Synthetic Aperture Radar (POLSAR) data. First, classification of Earth terrain components using a POLSAR image which is one of the important applications of Radar Polarimetric; second, we used POLSAR to measure azimuth slopes that are related to shifts in polarization orientation angle. Polarization orientation angle is one of the parameters among the wealth of polarimetric information when analyzing POLSAR data.
    At first, we used a method for unsupervised classification of terrain types and man-made objects by POLSAR data. This technique is a combination of the unsupervised classification based on Polarimetric target decomposition and the maximum likelihood classifier based on the complex Wishart distribution for the Polarimetric covariance matrix. This unsupervised classification based on the use of two-dimensional Entropy (H) / Alpha angle (α) classification plane, where all random scattering mechanisms can be represented. Then, we appended the Anisotropy (A) information to the unsupervised classification combined Wishart classifier. After comparing the Au-Gu farm ground truth map with our classification result, the experiment results agreed with ground truth map. We introduced the Anisotropy (A) information, and found it allowed the improvement of the capability to distinguish between different classes whose cluster centers end in the same Entropy (H) – Alpha (α) zone.
    Second, we used POLSAR to measure azimuth slopes. When SAR images a rugged terrain area, surface slopes have two main effects on the SAR image response. The first is the change of radar cross section per unit image area, and the second is that polarization states are also affected, because azimuth slopes induce polarization orientation changes. We used the polarization characteristic, and the circular Polarization algorithm to estimate polarization orientation angle shifts. For comparison, the orientation angles from a digital elevation model (DEM) generated using C-band interferometry. However, the experiment results in TAIWAN POLSAR data sets were very noisy. At last, we listed and discussed some possible sources that affected the experiment results.
    Table of Content 中文摘要……………..…………………………………………I
    英文摘要……………...………………………………………III
    目錄………………………………………………………V
    圖片目錄……………………………………………………VIII
    表格目錄……………………………………………………XIV
    第一章 緒論……………………………………………….. 1
    1.1研究目的………………………………………………….. 1
    1.2文獻回顧………………………………………………….. 3
    1.3內容簡介………………………………………………….. 5
    第二章 全偏極合成孔徑雷達……………………………………7
    2.1 全偏極合成孔徑雷達基本原理…………..…………….. 7
    2.2 全偏極合成孔徑雷達資料特性……………….………..15
    2.2.1 散射矩陣…………………………………………….15
    2.2.2 共變異矩陣………………………………………….16
    2.2.3 同調矩陣…………………………………………….18
    第三章 目標矩陣分解於分類應用………….……………..20
    3.1 H/A/α目標矩陣分解理論………………………….….20
    3.2 複數Wishart分佈分類………………………….……….24
    3.3 非監督性分類法………………………………………….26
    3.4 實驗成果………………………………………………….31
    3.4.1 實驗地區介紹………………………………………31
    3.4.2 H/ 非監督性分類結果….………………………….35
    3.4.3 H/ /A非監督性分類結果………………………….41
    3.4.4 H/ 與H/ /A分類成果之比較…..….…………….46
    第四章 地形於雷達極化方位角之偏移效應……………...48
    4.1 地形坡度與雷達極化方位角的關係…………………….49
    4.2 全偏極合成孔徑雷達資料呈現與轉換………………….56
    4.3 估算雷達極化方位角偏移的方法……………………….58
    4.3.1 圓形極化演算法…………………………………....60
    4.3.2 數位地形模型(DEM)模擬………………………....62
    4.4 實驗成果………………………………………………….65
    4.4.1 美國測試區實驗成果……………………………....65
    4.4.2 台灣測試區實驗成果……………………………....68
    4.4.3 成果討論…………………………………………....73
    第五章 結論與展望………….…………………………….78
    5.1 結論………………………………………………………78
    5.1.1非監督式目標分類…………………………………78
    5.1.2 地形於雷達極化方位角之偏移效應……………...79
    5.2 展望………………………………………………………81
    5.2.1非監督式目標分類…………………………………81
    5.2.2地形於雷達極化方位角之偏移效應………………81
    附錄A 全偏極合成孔徑雷達之相位校正…………...……………….83
    參考文獻……………………………………………...………………...88
    Reference [1] Ulaby, F. T., C. Elachi, Radar Polarimetry for Geoscience Applications, Artech House, 1990.
    [2] Lemoine G. G., G. F. De Grandi, and A. J. Sieber, “Polarimetric contrast classification of agricultural fields using MAESTRO1 AIRSAR data,” Int. J. Remote Sensing, vol. 15, no. 14, pp. 2851-2869, 1994.
    [3] Kong J. A. et al., “Identification of terrain cover using the optimal terrain classifier,” J. Electronmagn. Waves Applicat., vol. 2, pp. 171-194, 1998.
    [4] Lee J. S., M. R. Grunes, and R. Kwok, “Classification of Multi-look polarimetric SAR imagery based on complex Wishart distribution,” Int. J. Remote Sensing, vol. 15, no. 11, 1994.
    [5] Huynen J. R., “Phenomenological Theory of Radar Target,” PHD thesis, Technical University Delft, Bronder Offset, Rotterdam, The Netherlands, 1970.
    [6] Cloude, S. R., E. Pottier, “An Entropy Based Classification Scheme for Land Applications of Polarimetric SAR,” IEEE TGRS, vol. 35, no. 1, pp. 68-78, January 1997.
    [7] Lee, J. S., M. R. Grunes, R. Kwok, “Classification of multi-look Polarimetric SAR Imagery based on the Complex Wishart Distribution,” International Journal of Remote Sensing, vol. 15 ,No. 11, pp. 2299-2311, 1994.
    [8] Pottier, E., J. S. Lee, “Application of the H/A/ Polarimetric Decomposition Theorem for Unsupervised Classification of Fully Polarimettic SAR Data based on the Wishart Distribution,” CEOS SAR Workshop, pp. 80-85, Nov. 1999.
    [9] Lee, J. S., M. R. Grunes, T. L. Ainsworth, L. J. Du, D. L. Schuler, and S. R. Cloude, “Unsupervised Classification Using Polarmetric Decomposition and the Complex Wishart Classifier,” IEEE Trans. on Geoscience and Remote Sensing, vol. 37, NO. 5, pp. 2249-2258, September 1999.
    [10] Lee, J. S., D. L. Schuler, and T. L. Ainsworth, “Polarimetric SAR Data Compensation for Terrain Azimuth Slope Variation,” IEEE Trans. on Geoscience and Remote Sensing, vol. 38, NO. 5, pp. 2153-2163, September 2000.
    [11] Schuler, D. L., J. S. Lee, and G. De Grandi, “Measurement of Topography using Polarimetric SAR Images,” IEEE Trans. Geosci. Remote Sensing , pp. 1266-1277, September 1996. 
    [12] Schuler, D. L., J. S. Lee, T. L. Ainsworth, and M. R. Grunes, “Terrain Topography Measurement using Multipass Polarimetric Synthetic Aperture Radar Data,” Radio Sci., vol. 35, pp. 813-832, May-June 2000.
    [13] Lee, J. S., D. L. Schuler, T. L. Ainsworth, “Polarimetric SAR Data Compensation for Terrain Azimuth Slope Variation,” IEEE Trans. Geosci. Remote Sensing , vol. 38, No. 5, September 2000. 
    [14] Lee, J. S., D. L. Schuler, T. L. Ainsworth, Ernst Krogager, Dayalan Kasilingam, and W. M. Boerner, “On the Estimation of Radar Polarization Orientation Shifts Induced by Terrain Slopes,” IEEE Trans. on Geoscience and Remote Sensing, vol. 40, NO. 1, pp. 30-41, January 2002.
    [15] Pottier, E., D. L. Schuler, J. S. Lee, and T. L. Ainsworth, “Estimation of the Terrain Surface Azimuthal/Range Slopes using Polarimetric Decomposition of POLSAR Data,” in Proc. IGRASS’99, Lincoln , NE, pp. 2212-2214, July 1999.
    [16] Krogager E., and Z. H. Czyz, “Properties of the Sphere, Diplane, and Helix Decomposition,” in Proc. 3rd Int. Workshop on Radar Polarimetry, Nantes, France, pp. 106-114, Apr. 1995.
    [17] Schuler D. L., J. S. Lee, and T. L. Ainsworth, “Compensation of Terrain Azimuth Slope effects in Geophysical Parameter studies using Polarimetric SAR Data,” Remote Sensing Environ., vol. 69, pp. 139-155, 1999.
    [18] Cloude, S. R., E. Pottier, “A Review of Target Decomposition Theorems in Radar Polarimetry,” IEEE Trans. on Geoscience and Remote Sensing, vol. 34, NO. 2, pp. 498-518, March 1996.
    [19] Zebker H. A., Yunling L., “Phase Calibration of Imaging Radar Polarimeter Stokes Matrices,” IEEE Trans. on Geoscience and Remote Sensing, vol. 28, NO. 2, March 1990.
    [20] Ferro-Famil L., E. Pottier and J.S. Lee, “Unsupervised classification of multi-frequency and fully polarimetric SAR images based on H/A/Alpha- Wishart distribution,” Proceedings of IGARSS’00, July 2000.
    [21] Schuler D. L., J. S. Lee, and T. L. Ainsworth, E. Pottier, and W. M. Boerner, “Terrain Slope Measurement Accuracy Using Polarimetric SAR Data,” IEEE, 1999.
    [22] Lee J. S., E. Krogager, D. L. Schuler, T. L. Ainsworth, and W. M. Boerner, “On the Estimation of Polarization Orientation Angles Induced from Using Polarimetric SAR Data,” IEEE, 2000.
    [23] 陳家堂, “全偏極合成孔徑雷達濾波效應於地表分類之研究,” 國立中央大學太空科學研究所碩士論文, 1997.
    [24] 陳家堂, “全偏極合成孔徑雷達於目標分類之研究,” 國立中央大學太空科學研究所博士論文, 2002.
    Advisor
  • Kun-Shan Chen(陳錕山)
  • Files
  • 91623007.pdf
  • approve immediately
    Date of Submission 2004-06-28

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.