Title page for 91521069


[Back to Results | New Search]

Student Number 91521069
Author Sue-June Syu(許士忠)
Author's Email Address No Public.
Statistics This thesis had been viewed 2114 times. Download 2012 times.
Department Electrical Engineering
Year 2003
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Feasibility study of gene chips based on electrical detection
Date of Defense 2004-07-07
Page Count 78
Keyword
  • DNA
  • Gold nanoparticle
  • Hybridization
  • Impedance
  • Microelectrode
  • Abstract This research combines with semiconductor procedure, silicon surface chemical process and DNA hybridization etc. We utilize difference of impedance to replace traditional fluorescence label. Furthermore we utilize gold nanoparticle to enhance difference of signals for measurement of DNA sequences.
      First, we use semiconductor procedure to deposit silica film at silicon wafer, and plate with a pair gold microelectrode on the chips that have various widths of electrode. Second we bond capture DNA on SiO2 film between electrodes by covalent bond. Then we bond target DNA and probe DNA between microelectrodes by DNA hybridization. Finally we bond gold nanoparticle at 5’end of DNA by Au-S bond. We use Keithley 4200 and HP4284 to probe processed chip and measure the impedance at 1 MHz. In total we probe more than ten electrodes that include various electrode widths so as to estimate effect of electrode width on electric measurement of DNA hybridization.
      We find that when electrodes are more and more narrow, the differences of impedance between hybridization and nonhybridization are more and more obvious. These results verify that this electric measurement can’t only recognize occurring of DNA hybridization, but also make results more sensitive by reducing electrode widths. As the result of this method, we could detect the gene sequences of DNA, save the cost, and improve accuracy of measurement.
    Table of Content 中文摘要……………………………………………………………………i
    英文摘要……………………………………………………………………ii
    誌謝…………………………………………………………………………iii
    目錄…………………………………………………………………………iv
    圖目錄………………………………………………………………………vii
    表目錄………………………………………………………………………x
    第一章 緒論………………………………………………………………1
      1.1 前言………………………………………………………………1
      1.2 文獻回顧…………………………………………………………6
      1.3 研究動機及目的…………………………………………………10
    第二章 研究背景及原理介紹……………………………………………11
      2.1 DNA 基本特性及檢測原理…………………………………… 11
      2.2 現行 DNA 檢測方法及原理…………………………………13
      2.3 以金奈米粒子檢測 DNA 之原理……………………………15
        2.3.1 金奈米粒子的特性………………………………………15
        2.3.2 金奈米粒子與 DNA 結合之原理………………………16
      2.4 本實驗之設計……………………………………………………17
    第三章 實驗方法與步驟…………………………………………………20
      3.1 微電極之製作流程介紹…………………………………………20
        3.1.1 微電極光罩之設計………………………………………20
        3.1.2 儀器設備…………………………………………………23
        3.1.3 微電極晶片製程流程……………………………………25
      3.2 化學改質與雜交反應之步驟……………………………………32
        3.2.1 實驗試劑與化學藥品……………………………………32
        3.2.2 實驗器材…………………………………………………35
        3.2.3 表面化學改質步驟………………………………………36
        3.2.4 DNA 的雜交反應與金奈米粒子之修飾………………39
        3.2.5 單一錯交目標 DNA 之反應(對照組)…………………42
      3.3 實驗量測步驟……………………………………………………48
        3.3.1 顯微鏡觀察………………………………………………48
        3.3.2 電訊號量測實驗…………………………………………49
        3.3.3 資料儲存之分類…………………………………………53
      3.4 觀察金奈米粒徑與電極間距對電子基因偵測影響之實驗……53
    第四章 結果與討論………………………………………………………57
      4.1 微電極製作結果…………………………………………………57
      4.2 DNA 結合金奈米粒子之分析…………………………………59
      4.3 DNA 電特性之分析……………………………………………61
        4.3.1 實驗組與對照組的電訊號差異…………………………63
        4.3.2 微電極寬度對電訊號的影響……………………………65
      4.4 觀察金奈米粒徑與電極間距對電子基因偵測之影響…………67
    第五章 結論………………………………………………………………72
    參考文獻……………………………………………………………………74
    附錄…………………………………………………………………………78
    Reference [1] So-Jung Park, T. Andrew Taton, and Chad A. Mirkin, “Array-Based Electrical Detection of DNA with Nanoparticle Probes”, Science, 1503-1506, Feb 22, 2002.
    [2] Joon Sung Lee, Yang-Kyu Choi, Michael Pio, Jeonggi Seo and Luke P. Lee Mat. Res. Soc. Symp. Proc., “Nanogap Capacitors for Label Free DNA Analysis”, Materials Research Society, vol. 729, c 2002.
    [3] 陳克強, 單一特定DNA分子之偵測,
    國立台北科技大學化學工程系碩士班論文, 2003.
    [4] 蔡宜樺, 應用奈米電極檢測支單一核酸多型性生物晶片
    國立台灣大學機械工程學研究所碩士論文, 2003.
    [5] James Baker-Jarvis, Chriss A. Jones, Bill Riddle, ”electrical properties and dielectric relaxation of DNA in solution”, NIST Technical note, U.S. Departmeny of commerce 1998.
    [6] 許景翔, 金奈米粒子合成及表面化學改質與其應用於 DNA 分子雜交動力學之探討, 國立中央大學化學工程與材料工程研究所碩士論文, 2003.
    [7] Elena Pirogova, George P.Simon, Irena Cosic, “Investigation of the applicability of dielectric relaxation properties of amino acid solutions within the resonant recognition model”, IEEE TRANSACTION ON NANOBIOSCIENCE, VOL.2, NO. 2, JUNE 2003.
    [8] H. Edward Ayliffe, A. Bruno Frazier, Member, IEEE, and R.D. Rabbitt, “Electric impedance spectroscopy using microchannels with integrated metal electrodes”, IEEE JOURNAL OF MICROELECTROMECHANICAL SYSTEM, VOL.8, NO.1, MARCH 1999.
    [9] Joon Sung Lee, Yang-Kyu Choi, Luke P. Lee, “Label-free dielectric detection of DNA hybridization by nanogap junction arrays”,
    University of California at Berkeley, California 94720, 2002.
    [10] Jason E. Gestwicki, Helen V. Hsieh, J. Bruce Pitner, “Using Receptor conformational change to detect low molecular weight analytes by surface plasmon resonance”, Anal. Chem. 73, 5732-5737, 2001.
    [11] P.Arena, M. Bucolo, L.Fortuna, L.Occhipinti, “Cellular neural networks for real-time DNA microarray analysis”, IEEE ENGINEERING IN MEDICINE AND BIOLOGY, March/April, 2002.
    [12] Joon Sung Lee, Sebaek Oh, Yang-Kyu Choi, Luke P.Lee, “Label-free dielectric detection of DNA hybridization by nanoelectrodes”, Berkeley sensor and actuator center, Department of Bioengineering, University of California at Berkeley, 2002.
    [13] Joon Sung Lee, Sebaek Oh, Yang-Kyu Choi, and Luke P.Lee, “Nanogap junction arrays for label-free DNA hybridization detection”, University of California at Berkeley, Berkeley, CA 94720A, 2002.
    [14] Joseph Wang, Abdel-Nasser Kawde, “Amplified label-free , electrical detection of DNA hybridization”, Analyst, 127, 383-386, 2002.
    [15] Juntao Xu, Sheila A.Grant, Robert L. Pastel, “Laser-Guided direct writing: a novel method to deposit biomolecules for biosensors arrays”, IEEE TRANSATIONS ON BIOMEDICAL ENGINEERING, VOL.50, NO.1, JANUARY 2003.
    [16] Hans-Werner Fink, Christian Schonenberger, “Electrical conduction through DNA molecules”, Macmillan Magazines Ltd, 1999.
    [17] A. Yu. Kasumov, M. Kociak, S. Gueron, B. Reulet, V. T. Volkov, D. V. Klinov, H. Bouchiat, “Proximity-induced superconductivity in DNA “, Science, VOL 291, 12 January 2001.
    [18] Xingyan Sun, Pingang He, Shenghui Liu, Jiannong Ye, Yuzhi Fang, “Immobilization of single-stranded deoxyribonucleic acid on gold electrode with self-assembled aminoethanethiol monolayer for DNA electrochemical sensor applications”, Talanta, 47 487-495, 1998.
    [19] Joseph Wang, Ronen Polsky, Danke Xu, “Silver-enhanced colloidal gold electrochemical stripping detection of DNA hybridization”, Langmuir, 17, 5739-5741, 2001.
    [20] Joseph Wang, Peter E. Nielsen, Mian Jiang, Xiaohua Cai, Joao Roberto Fernandes, Douglas H.Grant, Mehmet Ozsoz, Asher Beglieter, Michael Mowat, “Mismatch-sensitive hybridization detection by peptide nucleic acids immobilized on a quartz crystal microbalance”, Anal. Chem. Vol.69, 5200-5202 No.24, December 15, 1997.
    [21] ” http://www.biochip.org.tw/BIOCHIP.asp”, 台灣生物晶片協會官方網站
    [22] Linda A Chrisey, “Covalent attachment of synthetic DNA to self-assembled monolayer films, Nucleic Acids Reaseach” Vol.24, No.15, 3031-3039,1996.
    Advisor
  • Jang-Zern Tsai(蔡章仁)
  • Yue-Ming Hsin(辛裕明)
  • Files
  • 91521069.pdf
  • approve immediately
    Date of Submission 2004-07-14

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.