Title page for 91324011


[Back to Results | New Search]

Student Number 91324011
Author Lin Ke(戈鈴)
Author's Email Address No Public.
Statistics This thesis had been viewed 1880 times. Download 1656 times.
Department Chemical and Materials Engineering
Year 2003
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Study of Cu dissolution induced by Electromigration
Date of Defense 2004-06-23
Page Count 54
Keyword
  • Cu
  • electromigration
  • Sn-Cu
  • solders
  • Abstract To study the kinetics of Cu dissolution induced by electromigration,we produce a flip chip structure by connecting two Cu foil with a solder
    bump. Three different Sn-Cu solders are studied which are Sn, Sn0.7Cu,and Sn3.0Cu. The solder bumps are stressed by current density of
    104(amp/cm2) at three elevated temperatures, which are 155 ºC, 180 ºC,and 200ºC.
    The result shows that electromigration will cause the consumption in the cathode Cu pad. It is because that once Cu atoms dissolve into Sn,
    they are transported to the anode interface quickly. Hence, the solubility of Cu in Sn near the interface between IMC and Sn at the cathode side is always maintain unsaturated. We conclude that the dissolution process of Cu into Sn controls the Cu foil consumption.
    The activation energy of EM-induced Cu consumption of three
    solders, Sn, Sn0.7Cu, Sn3.0Cu, is about 0.68eV, 0.72eV,and 0.73eV
    respectively. Adding Cu into Sn solder can reduce electromigration
    effect.
    By the way, a critical temperature that can distinguish two type
    electromigration failure modes is about 55.3oC. At higher the critical
    temperature, Cu dissolution induced by electromigration occur the
    cathode side; at lower critical temperature, voids will form at the cathode
    side
    Table of Content 目錄頁數
    中文摘要......................................................................I
    英文摘要.....................................................................II
    誌謝........................................................................III
    目錄.........................................................................IV
    圖目錄.......................................................................VI
    表目錄.......................................................................IX
    第壹章、導論..................................................................1
    第貳章、文獻回顧..............................................................4
    2.1 電遷移原理................................................................4
    2.1.1 電遷移理論方程式........................................................4
    2.1.2 平均失效時間(MTTF) .....................................................5
    2.2 合金電遷移效應............................................................6
    2.3 失效模式..................................................................8
    2.3.1 第一類失效模式..........................................................8
    2.3.2第二類失效模式...........................................................9
    第參章、實驗方法.............................................................10
    3.1 試片的製備...............................................................10
    3.1.1 通電試片製作...........................................................10
    3.1.2 熱處理試片製作.........................................................12
    3.2 金相分析.................................................................12
    3.2.1背向式電子顯微鏡(BSE)觀察...............................................12
    3.2.2 聚焦離子束(FIB)觀察....................................................12
    3.2.3 電子探測分析儀(EPMA)分析...............................................13
    第肆章、結果與討論...........................................................14
    4.1 純錫銲料之電遷移模式.....................................................14
    4.1.1固態熱處理之界面反應及銅墊層消耗動力學行為..............................14
    4.1.2銅墊層之電遷移應........................................................19
    4.2 添加銅之影響.............................................................30
    4.2.1 不同銲料之活化能.......................................................30
    4.2.2 添加銅之電遷移效應.....................................................39
    4.3 失效之臨界溫度...........................................................44
    附錄A 錫-3.5銀-10銦之電遷移效應..............................................48
    第伍章、結論.................................................................51
    參考文獻.....................................................................52
    Reference 參考文獻
    1. Edelstein D, Heidenriech J, Goldblatt R, Cote W, Uzoh C, et al. IEEE
    Int Electron Dev. Meet, pp. 773 (1997)
    2. P. J. Clarke, A. K. Ray, and C. A. Hogarth, International Journal of
    Electronics, 69, pp. 333-338, (1990).
    3. J. Tao, N. W. Cheung, and C. Hu, IEEE Electron Device Letters, 14,
    pp.554-556, (1993)
    4. M. Sekiguchi, K. Sawada, M. Fukumoto, and T. Kouzaki, Journal of
    Vacuum Science & Technology B, 12, pp. 2992-2996, (1994)
    5. L. Arnaud, G. Tartavel, T. Berger, D. Mariolle, Y. Gobil, and I. Touet,
    Microelectron. Reliab. 40, pp.77 (2000)
    6. T. Kwok, Mater. Chem. and Phys., 33, pp. 176-188, (1993)
    7. C-K. Hu, K. Y. Lee, L. Gignac, and R. Carruthers, Thin Solid Films
    308–309, 443 (1997)
    8. Blech IA, Sello H. Phys Failures Elect, 5, pp.496 (1967)
    9. E. M. Davis, W. E. Harding, R. S. Schwartz and J. J. Corning, IBM J.
    Res. Develop, 8, pp. 102, (1964)
    10. P. A. Totta, S. Khadpe, N. G. Koopman, T. C. Reiley, and M. J.
    Sheaffer, in “Electronics Packaging Handbook,” edited by R.R.
    Tummala, E. J. Rymaszewski, and A. G. Klopfenstein, (Chapman &
    Hall, M. A., 1999) p. 2-129.
    11. 1999 International Roadmap for semiconductor Technology,
    Semiconductor Industry Association, San Jose, CA.
    12. Christine S. Hav-Riege, Microelectronics Reliab. 44 pp.196 (2004)
    13. W. J. Plumbridge, J. Mater. Science, 31 pp. 2501~2504 (1996)
    14. L. H. Su, Y. W. yen, C. C. Lin, and S. W. Chen, Metal. Mater. Trans. B,
    28, pp. 927~934 (1997)
    15. M. Abtew, and G. Selvdury, Mater. Science and Engineering, 27
    pp.95~141 (2000)
    16. 陳志銘、陳信文,”銲料與界面反應”,材料會訊, 6,pp. 74~80 (1999)
    17. H. Y. Chang, S. W. Chen, D. S. Wong, and H. F. Hsu, submitted to J.
    Mater. Research for reviewing for publication (2003)
    18. J. Y. Park, J. S. Ha, C. S. Kang, K. S. Shin, M. I. Kim, and J.P. Jung, J.
    Mater. 29, pp. 1145~1152 (2000)
    19. C. Y. Chang, S. M. Sze, ULSI Technology, the McGRAW-HILL, pp.
    663 (1996)
    20. K. N. Tu, Phys. Rev. B 45, 1409 (1992)
    21. C. K. Hu and H. B. Huntington, Physical Review B, 26, pp.
    2782-2789,(1982)
    22. P. F. Tang, John Wiley&Sons, N. Y., 64 (1993)
    23. Ames I, d’Heurle FM, Horstmann RE. IBM J Res Develop pp.14~41
    24. C. Y. Liu, Chih Chen, and K. N. Tu, J. Appl. Phys., 88, November,
    pp.5703 (2000)
    25. S. Brandenbery and S. Yeh, in Proceedings of the Surface Mount
    International Conference and Exposition, SMI 98, San Jose, CA August
    (1998) pp. 337-344
    26. C. Y. Liu, C. Chen, C. N. Liao, and K. N. Tu, Appl. Phys. Lett. 75, pp.
    58 (1999)
    27. Y. H. Lin, Y. C. Hu, Johnson Tsai, and C. Robert Kao, Int’l Symposium
    on electronic Materials and Packaging pp.253~258(2002)
    28. M. Onishi and H. Fujibuchi, Trans. JIM 16, pp. 539(1975)
    29. http:// www.solderword.com/
    30. T. Y. Lee, K. N. Tu, and D. R. Frear, J. Appl. Phys. 90, 4502 (2001)
    31. S. W. Chen, C. M. Chen, and W. C. Liu, J. Electron Mater. 27, pp.
    1193-1197
    32. Prabjit Singh and Milton Ohring, J. Appl. Phys. 56, pp. 899-907 Mater.
    27, pp. 1193-1197
    Advisor
  • Chenyi Liu(劉正毓)
  • Files
  • 91324011.pdf
  • approve immediately
    Date of Submission 2004-07-09

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.