Title page for 91324009


[Back to Results | New Search]

Student Number 91324009
Author Kun-Fong Shieh(謝坤峰)
Author's Email Address acvzjj@yahoo.com.tw
Statistics This thesis had been viewed 2782 times. Download 2843 times.
Department Chemical and Materials Engineering
Year 2003
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Study of Mold Releasing Agent and Surface Energy for Nanoimprint Lithography
Date of Defense 2004-06-25
Page Count 98
Keyword
  • nanoimprint
  • surface energy
  • Abstract There are two major topics in this thesis. One is the research of mold release agents and surface energy for nanoimprint lithography . The other is the temperature distribution of e-beam patterning.
    The following is the first major topic. As all imprint techniques rely on contact between resist and mold, the wetting and adhesion characteristics of the polymer materials to the substrate are critical issues. The strength of adhesion between mold surface and resist is characterized by the amount of energy required to separate the two materials. In this study, trichloro(3,3,3-trifluoropropyl)silane (FPTS) and trichloro(1H, 1H, 2H, 2H- perfluorooctyl)silane (FOTS) are used for self-assembled monolayers (SAM) on mold as releasing and anti-sticking layer for nanoimprint. Their formation mechanism can be provided the evidence of a chemical reaction between the head groups of different fluorinated trichlorosilanes and the surface hydroxyl groups by FTIR. We use contact angle system、ellipisometer、atomic force microscopy to discuss the nature properties of SAMs including surface energy,film thickness,surface roughness etc. The results demonstrated that the resist surface revealed the lower defect and roughness after separation of imprinting by mold with SAMs of FOTS monolayer, ascribed to the FOTS monolayer with a larger amount of -CF2 than FPTS monolayer resulted in lower surface energy. Furthermore, the surface energy effect influenced not only the defect on the resist after separation, but the resolution of patterning of nanoimprint directly. In addition,we use Oss&Good theory to estimate the surface energy of some materials including some photoresists ,silicon dioxide,copolymers of PMMA-PMAAM-PS . In this purpose, we hope establishing a database to be used as a reference in selecting imprinted materials for nanoimprint lithography.
    The following is the second major topic. In this research, we develop a new method to estimate the temperature distribution of e-beam patterning. The resists we choose are SU-8,NEB,193 photoresists. The results demonstrated SU-8 photoresist has higher temperature distribution than the other ones because of its thicker film. This method has some advantages like simple、cheap etc.
    Table of Content 總目錄
    摘要……………………………………………………………………..Ⅰ
    Abstract………………………………………………………………….Ⅲ
    謝誌……………………………………………………………………..Ⅴ
    總目錄 ………………………………………………………………....Ⅵ
    表目錄 ……………………………………………………………..….Ⅹ
    圖目錄 ………………………………………………………………...XI
    第一章緒論……………………………………………………………..1
    1.1 奈米微壓印技術發展現況與改進……………………………….…1
    1.2 應用於半導體工業上之溫度測量方法發展現況………………….1
    1.3 論文架構…………………………………………………………….2
    第二章文獻回顧………………………………………………………..3
    2.1 電子束微影技術簡介……………………………………………….3
    2.2 nanolithography介紹 ……………………………………………….3
    2.3電子束微影設備……………………………………………………...5
    2.3.1 高斯式電子束微影機………………………………………………………6
    2.3.2 遮式電子束微影機………………………………………………………..8
    2.3.3 電子束投射微影機……………………………………………………….11
    2.4化學微縮及熱流電子束微影製程及其應用……………………….13
    2.4.1 熱流技術………………………………………………………………….13
    2.4.2 化學微縮技術…………………………………………………………….16
    2.5兩性阻劑及非平面結構之電子束微影技術及其應用…………….17
    2.5.1 兩性阻劑技術…………………………………………………………….17
    2.5.2 非平面結構之電子束微影技術………………………………………….19
    2.6結語………………………………………………………………….20
    2.7 微影製程各步驟的簡要說明……………………………………...23
    2.7.1 上底材…………………………………………………………………….23
    2.7.2 上阻劑…………………………………………………………………….23
    2.7.3 軟烤……………………………………………………………………….23
    2.7.4 曝光……………………………………………………………………….25
    2.7.5 曝光後烘烤……………………………………………………………….25
    2.7.6 顯影……………………………………………………………………….26
    2.7.7 硬烤……………………………………………………………………….26
    2.8 自組裝薄膜技術之介紹…………………………………………...26
    2.8.1 自組裝薄膜……………………………………………………………….28
    2.8.2 自組裝法之原則………………………………………………………….28
    2.8.3 SAMs的應用……………………………………………………………….29
    2.8.4 極待解決的問題………………………………………………………….30
    2.8.5 未來的展望………………………………………………………………..33
    2.9奈米微壓印技術的介紹………………………………………….....33
    2.9.1 奈米微壓印技術的原理………………………………………………….34
    2.9.2 molds、光阻、製程狀態…………………………………………………35
    2.9.3 壓印的SEM圖…………………………………………………………….35
    2.9.4 製程重覆性和耐久性…………………………………………………….36
    2.9.5 奈米微壓印技術的未來發展…………………………………………….36
    2.10表面能的分析……………………………………………………...37
    2.10.1 Oss&Good 理論………………………………………………………….38
    2.10.2 Zisman 理論…………………………………………………………….39
    2.10.3 Owens 理論………………………………………………………………40
    2.10.4 Wu 理論………………………………………………………………….41
    第三章應用在奈米微壓印製程上之脫模劑的研究…………………42
    3.1 實驗目的………………………………………………………….. 42
    3.2 實驗藥品…………………………………………………………...42
    3.3 實驗設備…………………………………………………………...42
    3.4 實驗步驟…………………………………………………………...42
    3.3.1 FPTS與FOTS自組裝在晶圓上之製程探討……………………………..43
    3.3.2 FPTS與FOTS的自組裝薄膜分析………………………………………..43
    3.3.3 FPTS與FOTS的穩定性分析……………………………………………..43
    3.3.4 壓印成果…………………………………………………………………...44
     3.3.4.a 壓印AFM……………………………………………………………...44
    3.3.4.b 壓印SEM………………………………………………………………44
    3.5 實驗結果與討論…………………………………………………...44
    3.5.1 自組裝薄膜形成機制與FTIR分析………………………………………44
    3.5.2 FPTS與FOTS自組裝薄膜之製程探討…………………………………..46
    3.5.3 FPTS與FOTS自組裝薄膜之厚度分析…………………………………..48
    3.5.4 FPTS與FOTS自組裝薄膜之表面分析…………………………………..50
    3.5.5 FPTS與FOTS自組裝薄膜之穩定性分析………………………………..50
    3.5.6 壓印成果…………………………………………………………………...53
    3.5.6.a 壓印後AFM圖……………………………………………………….53
    3.5.6.b 壓印後SEM圖……………………………………………………….55
    第四章應用於奈米微壓印製程上之不同材料之表面能的測量……57
    4.1 實驗目的…………………………………………………………...57
    4.2 實驗材料…………………………………………………………...57
    4.3 實驗設備…………………………………………………………...59
    4.4 實驗步驟…………………………………………………………...59
    4.4.1 表面能的測量………………………………………………………………59
      4.4.1.a 二氧化矽的表面能………………………………………………….59
      4.4.1.b 多種光阻的表面能………………………………………………….59
      4.4.1.c 共聚高分子之表面能……………………………………………….60
    4.4.2 共聚高分子之XPS結果…………………………………………………...60
    4.5結果與討論………………………………………………………….60
    4.5.1 二氧化矽的表面能…………………………………………………………60
    4.5.2 光阻的表面能………………………………………………………………60
    4.5.3 PMMA-PMAAM-PS共聚高分子之表面能………………………………..61
    4.5.4 PMMA-PMAAM-PS共聚高分子之XPS分析…………………………….66
    第五章 電子束曝光的溫度分佈………………………………………70
    5.1 實驗目的…………………………………………………………...70
    5.2 實驗藥品…………………………………………………………...70
    5.3 實驗機台…………………………………………………………...71
    5.4 實驗步驟…………………………………………………………...72
    5.5實驗結果與討論……………………………………………………75
    第六章 結論……………………………………………………………79
    6.1 實驗結論…………………………………………………………..79
    6.1.1 應用在奈米微壓印技術上之脫模劑的研究………………….…………...79
    6.1.2 應用於奈米微壓印技術上之不同材料之表面能的測量…………………79
    6.1.3電子束曝光的溫度分佈……………………………………………….……79
    參考文獻……………………………………………………………….80
    表目錄
    表2.1 2002年之半導體製程趨勢圖………………………………….5
    表2.2不同經化學微縮後之接觸洞在蝕刻製程後的尺寸變化………16
    表2.3 單層自組裝常見之基材,配位體及鍵結後之結構……………27
    表2.4 自組裝薄膜之應用……………………………………………...30
    表2.5 測試液體之表面能成份………………………………………..39
    表3.1 FOTS與FPTS在回火溫度為23、150OC的表面能成份…….49
    表3.2 FOTS與FPTS在回火溫度為23、150OC的厚度…………….49
    表4.1 多種二氧化矽之表面能成份…………………………………..62
    表4.2 多種光阻之表面能成份………………………………………..63
    表4.3 PMMA-PMAAM-PS共聚高分子之測試液體的接觸角............64
    表4.4 PMMA-PMAAM-PS共聚高分子之表面能................................65

    圖目錄
    圖2.1電子分別以raster及vector掃瞄的方式…………………….7
    圖2.2移動平台式曝光系統…………………………………………….8
    圖2.3遮式電子束微影機電子光學柱之系統圖……………………….9
    圖2.4遮式電子束微影機的遮罩(上圖)所產生的組合圖案(下圖)…10
    圖2.5 SCALPEL技術之電子束曝光系統圖…………………………….12
    圖2.6電子束微影相關技術演進圖……………………………………12
    圖2.7(a)熱流技術,(b)化學微縮技術……………………….............14
    圖2.8熱流(a)後、及(b)前之接觸孔圖案……………………………14
    圖2.9熱流製程(a)在軟烤溫度分別是120、135、及150OC時之熱流烘烤溫度及(b)時間對於接觸洞尺寸之效應…………………………….15
    圖2.10兩性阻劑之敏感曲線與其形成之環形圖案…………………..18
    圖2.11兩性阻劑之圖案設計密度對其直寫時間之影響……………..19
    圖2.12 (a)凸型曲線結構之剖面圖及(b)凹型曲線結構之剖面圖…….21
    圖2.13(a)螺絲式結構之通道的設計剖面圖及(b)實際通道之光學顯微鏡影像…………………………………………………………………..22
    圖2.14 微影製程步驟流程圖………………………………………….24
    圖2.15 自組裝反應流程及特性……………………………………….27
    圖2.16 SAMs當成光阻劑以製成有圖形之線路……………………...31
    圖2.17 直接自組裝在基材表面上成為特定圖形……………………31
    圖2.18 奈米微壓印技術的流程………………………………………34
    圖2.19 奈米微壓印的SEM圖………………………………………..36
    圖3.1 R-SiCl3自組裝在晶圓上的機制圖……………………………..45
    圖3.2 (a)二氧化矽(b)FOTS(c)FPTS 的FTIR圖譜…………………..45
    圖3.3 FPTS和FOTS自組裝薄膜在不同回火溫度下的表面能…….47
    圖3.4 FPTS和FOTS自組裝薄膜在不同浸泡時間下的表面能…….47
    圖3.5 (a)FPTS(b)FOTS 的AFM圖……………………………….….51
    圖3.6 FOTS與FPTS以氧電漿轟擊後的表面能變化……………….52
    圖3.7 FOTS與FPTS去浸泡HCl後的表面能變化…………………52
    圖3.8 FOTS與FPTS去浸泡NaOH後的表面能變化………………53
    圖3.9 NEB光阻被(a)二氧化矽表面(b)上FPTS(C)上FOTS的晶圓壓印後的AFM………………………………………………………………54
    圖3.10 NEB光阻被(a)二氧化矽表面(b)上FPTS(C)上FOTS的晶圓壓印後的SEM……………………………………………………………56
    圖4.1 PMMA-PMAAM-PS 共聚高分子系統在PMMA為60、80wt%時,N1S軌域XPS分析………………………………………………..68
    圖4.2 PMMA-PMAAM-PS 共聚高分子系統在PMMA為60、80wt%時,O1S軌域XPS分析………………………………………………..69
    圖5.1 R.B的結構式……………………………………………………70
    圖5.2 螢光顯微鏡實體圖……………………………………………..71
    圖5.3 測量光阻的溫度分佈的實驗步驟…………………………….73
    圖5.4 以電子束去曝光不同劑量的圖案……………………………..74
    圖5.5 NEB光阻的(a)溫度-強度曲線和(b)劑量-溫度曲線…………...76
    圖5.6 193光阻的(a)溫度-強度曲線和(b)劑量-溫度曲線………….…77
    圖5.7 SU-8光阻的(a)溫度-強度曲線和(b)劑量-溫度曲線…………...78
    Reference 參考文獻
    1.B.Heiddari, I.Maximov, E.-L.Sarwe,and L.Montelius, B J.Vac.Sci.Technol., B 17,2961(1999).
    2.B.Faircioth, H. Rohrs, R.Tiberio, R. Ruoff, and R. R. Krchnavek, J.Vac. Sci. Technol., B 18, 1866(2000).
    3.D. Eisert, W.Braun,S.Kuhn, J. Koeth, and A. Forchel, Microelectron. Eng. 46,179(1999).
    4.Eckert, E. R. G. and Goldstein, R. J., 1970, Measurements in Heat Transfer, McGraw-Hill,New York
    5.Dabiri,D.and Gharib, M., 1990,“Digital particle image thermometry and its application to a heated vortex ring,” Fluid Measurement and Instrumentation Forum. ASME FED. 95:27-34.
    6.Chu,S.S. and Grigoropoulos,C. P., 2000, “Determination of kinetic energy distribution in a Laser –Ablated titanium plune by emission and Laser Induced Fluorescence Spectoscopy,”Journal of Heat Transfer, Nov, 2000,Vol. 122,pp.771-775.
    7.張俊彥,鄭晃忠,積體電路製程及設備技術手冊,中華民國產業科技發展協會,中華民國電子材料與元件協會出版,第十二章, 1997.
    8.The International Technology Roadmap for Semiconductor, Semiconductor Industry Association, Santa Clara, CA (2002).
    9.柯富祥、葛祖榮及謝忠益,電子月刊,第9卷第9期,141頁 (2003)。
    10.P. Rai-Choudhury, “Handbook of Microlithography, Micromachining and Microfabrication”, SPIE Press, chap 2 (1997).
    11.R. S. Dhaliwal, W. A. Enichen, S. D. Golladay, M. S. Gordon, R. A. Kendall, L. E. Lieberman, H. C. Pfeiffer, D. J. Pinckney, C. F. Robinson, J. D. Rockrohr, W. Stickel and E. V. Tressler, IBM J. Res. & Dev., 45(5), 615 (Sep. 2001).
    12.J. A. Liddle, S. D. Berger, C. J. Biddick, M. I. Blankey, K. J. Bolan, S. W. Bowler, K. Brady, R. M. Camarda, W. F. Connely, A. Crorken, J. Custy, R. C. Fallow, J. A. Felker, L. A. Fetter, B. Freeman, L. R. Harriott, L. Hopkins, H. A. Huggins, C. S. Knurek, J. S. Kraus, D. A. Mixon, M. M. Mkrtchyan, A. E. Novembre, M. L. Peabody, W. M. Simpson, R. G. Tarascon, H. H. Wade, W. K. Waskiewicz, G. P. Watson, J. K. Williams, D. L. Windt, Jpn. J. Appl. Phys., 34, 6663 (1995).
    13.P. R. Krauss, P. J. Renstrom and S. Y. Chou, Science, 272, 85 (1996).
    14.R. F. Pease, Nature, 417, 802 (2002).
    15.H. P. W. Koops and J. Grob, “Springer Series in Optical Sciences: X-ray Microscopy”, Springer, Berlin, v43 (1984).
    16.S. D. Berger and J. M. Gibson, Appl. Phys. Lett., 57(2), 153 (1990).
    17.H. C. Pfeiffer, G. O. Langner and M. S. Sturans, Appl. Phys. Lett., 39, 775 (1981).
    18.H. C. Pfeiffer and W. Stickel, Microelectron. Eng., 27, 143 (1995).
    19.H. C. Pfeiffer and W. Stickel, FUTURE FAB International, 187 (Dec. 2002).
    20.T. Ishibashi, T.Toyoshima, N.Yasuda, T. Kanda, H.Tanaka, Y. Kinoshita, N. Watase and R. Eakin, Jpn. J. Appl. Phys. 40, 419 (2001).
    21.J. H. Chung, S. J. Choi, Y. Kan, S. G. Woo and J. T. Moon, Proc. SPIE, v3999, 305 (2000).
    22.H. L. Chen, F. H. Ko, L. S. Li, C. K. Hsu, B. C. Chen and T. C. Chu, Jpn. J. Appl. Phys, v41, 4163 (2002).
    23.H. L. Chen, C. H. Chen, F. H. Ko, T. C. Chu, C. T. Pan, and H. C. Lin, J. Vac. Sci. Technol. B20(6), 2973-2978 (2002).
    24.F.-H. Ko, H.-C. You, C.-C. Hsu, H.-L. Chen, T.-C. Chu, T.-F. Lei, Micro and Nano Engineering (MNE), PT-P-09, Cambridge, UK (2003).
    25.J.-K. Chen, F.-H. Ko, H.-L. Chen and F.-C. Chang, Jpn. J. Appl. Phys, v42, 3838-3841 (2003).
    26.J.-K. Chen, F.-H. Ko, H.-K. Chen and C.-T. Chou, J. Vac. Sci. Technol., accepted (2004).
    27.Nonogaki, S., Ueno, T., and Ito, T., “Microlithography Foundamentals in Semiconductor Devices and Fabrication Technology”, Marcel Dekker, New York, pp201, 1998.
    28.施錫龍, 電子束晶圓步進系統簡介 ,電子月刊第二卷第二期,1996.
    29.許兼貴,深紫外線抗反射技術及次100奈米世代電子束直寫阻劑特性研究,國立清華大學原子科學系碩士論文,2001.
    30.J. R. Hollahan et al. Eds, “Techniques and Applications of Plasma Chemistry”, Wiley, 1974.
    31.郭昭輝,謝國煌,自組裝薄膜技術之發展 ,化工技術月刊第十一卷第三期,2003.
    32.A. N. Broers, J. M. Harper, and W. W. Molzen, Appl. Phys. Lett. 33, 392,1978.
    33.D. Flanders, Appl. Phys. Lett. 36, 93 ,1980.
    34.K. Early, M. L. Schattenburg, and H. I. Smith, Microelectron. Eng. 11,317 ,1990.
    35.M. A. McCord and R. F. P. Pease, J. Vac. Sci. Technol. B 4, 86,1986.
    36.J. W. Lyding, T. C. Shen, J. S. Hubacek, J. R. Tucker, and G. C. Abelin,Appl. Phys. Lett. 64, 2010 ,1994.
    37.T. R. Albrecht, M. M. Dovek, C. A. Lang, P. Grutter, C. F. Quate, S. W.J. Kuan, C. W. Frank, and R. F. W. Pease, J. Appl. Phys. 64, 1178 1988,.
    38.S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Appl. Phys. Lett. 67, 3114,1995; Science 272, 85, 1986; P. R. Krauss and S. Y. Chou, the 39th,EIPB, Scottsdale, AZ, May 30–June 2, 1995 @J. Vac. Sci. Technol. B 13,2850 ~1995 .
    39.I. Rubin, Injection Molding ~Wiley, New York, 1972.
    40.S. Y. Chou, P. R. Krauss, and P. J. Renstrom, J. Vac. Sci. Technol. B 14,6 ,1996 .
    41.22.Michael C. McAlpine, Robin S. Friedman, and Charles M. Lieber, nano letters,3,4,443(2003).
    42.L. J. Guo, P. R. Krauss, and S. Y. Chou, Appl. Phys. Lett. (submitted).
    43.Matsunaga, T. J. Appl. Polym. Sci. 1977, 21, 2847.
    44.Ko, Y. C.; Rather, B. D.; Hoffman, A. S. J. Colloid Int. Sci. 1981,82, 25.
    45.Ruckenstein, E.; Lee, S. H. J. Colloid Int. Sci. 1987, 117, 172.
    46.Tretinnikov, O. N. Langmuir 1997, 13, 2988.
    47.Correia, N. T.; Ramos, J. J. M.; Saramago, N. J. V.; Calado, J. C.G. J. Colloid Int. Sci. 1997, 189, 361.
    48.Fowkes, F. M. J. Phys. Chem. 1962, 66, 382.
    49.Fowkes, F. M. J. Phys. Chem. 1968, 72, 3700.
    50.Van Oss, C. J.; Chaudhury, M. K.; Good, R. J. Chem. Rev. 1988, 88, 927.
    51.Van Oss, C. J.; Ju, L.; Chaudhury, M. K.; Good, R. J. J. Colloid Interface Sci. 1989, 128, 313.
    52.Fowkes, F. M. J. Phys. Chem. 1962, 66, 382.
    53.Ho, C. C. Colloid Polym. Sci. 1989, 267, 643.
    54.Owens,D.K. and Wendt,R.C.,J.Appl.Polym. Sci.,13,1741,1969.
    55.Wu,S.,J.Polymer Sci.Part C,34,19,1971.
    56.Sagiv, J. J. Am. Chem. Soc. 1980,102,92.
    57.Tripp, C. P.; Hair, M. L. J . Phys. Chem. 1993, 97, 5693.
    58.Tripp, C. P.; Hair, M. L. Langmuir 1991, 7,923.
    59.Astandard four-parameter logistic function wasused to fit a sigmoidal function through theexperimental data. (See for example: Agresti, A. Analysis of Ordinal Categorical Data; Wiley-Interscience: New York, 1984.)
    60.Kui-Xiang Ma and Tai-Shung Chung, J. Phys. Chem. B 2001, 105, 4145-4150
    61.Good, R. J. In Contact Angle, Wettability, and Adhesion; VSP: Utrecht, The Netherlands, 1993.
    62.H. weiss, Surf. Coat. Technol. 71, 201 (1995.)
    63.John Tsibouklis, Maureen Stone, Adrian A. Thorpe, Paul Graham, Thomas G. Nevell, and Richard J. Ewen. Langmuir 1999, 15, 7076-7079
    64.S. H Goh, S. Y. Lee, X. Zhou. Macromolecules 1998, 31, 4260-4264
    65.Juzhen Yi and S. H. Goh. Macromolecules 2001, 34, 4662-4665
    66.Shiyong Liu, Ming Jiang, Chi-Ming Chan, Lu-Tao Weng. Macromolecules 2001, 34, 3802-3804
    67.Shiyong Liu, Chi-Ming Chan, Lu-Tao Weng, Lin Li, Ming Jiang. Macromolecules 2002, 35, 5623-5629
    Advisor
  • Cheng-Tung Chou(周正堂)
  • Fu-Hsiang Ko(柯富祥)
  • Files
  • 91324009.pdf
  • approve immediately
    Date of Submission 2004-06-25

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.