Title page for 91323119


[Back to Results | New Search]

Student Number 91323119
Author Yuan-Deng Su(蘇園登)
Author's Email Address s1323119@cc.ncu.edu.tw
Statistics This thesis had been viewed 2106 times. Download 2099 times.
Department Mechanical Engineering
Year 2003
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Surface Plasmon Resonance Phase Image System
Date of Defense 2004-06-18
Page Count 91
Keyword
  • common-path
  • heterodyne
  • phase-shift
  • surface plasmon resonance
  • Abstract Surface plasmon resonance (SPR) sensor can measure the thickness or dielectric constant change of nanolayer between solid-gas or solid-liquid interface. SPR phase image system not only can obtain high sensitivity phase information but also can provide high-throughout space information.
    Using the incident wave which including P-wave and S-wave to excite surface plasmon, P-wave has a violent phase jump and shift by the sample change in the resonance angle, and S-wave not. According to above, measure the phase difference of reflection wave between P-wave and S-wave to obtain SPR phase information.
    First, by use the modified Mach-Zehnder phase shifting interferometry and collocate five step phase reconstruct to measure the spatial phase variation of the nanolayer and discuss the phase stability and drift phenomenon.
    In order to obtain the long-term phase stability, the paper bring up two common-path SPR interferometry, the one is common-path heterodyne interferometry and the other is common-path liquid phase-shift interferometry. Common-path heterodyne interferometry that combine lock-in amplifier has several merits such as simple optical setup, high stability, high accuracy and rapid measurement. Common-path liquid phase-shift interferometry not only have several merits like above but provide high resolution and low cost. The phase stability can achieve 10-3π in long-term measurement and the sensitivity can achieve 5x10-6RIU.
    Table of Content 摘要I
    AbstractIII
    致謝IV
    目錄V
    圖目錄IX
    表目錄XII
    第一章緒論1
    1-1前言1
    1-2文獻回顧2
    1-3研究動機與方法3
    1-4論文架構5
    第二章表面電漿共振6
    2-1表面電漿波與衰逝全反射6
    2-1-1橫電模態8
    2-1-2橫磁模態10
    2-2光激發表面電漿波方式與量測方式13
    2-2-1光波耦合方式14
    2-2-2量測方式15
    2-3Kretschmann組態下SPR反射率及相位曲線16
    2-4SPR之相位特性21
    2-4-1不同厚度金膜下之SPR相位變化23
    2-4-2不同待測物折射率與厚度之SPR相位關係24
    第三章移相干涉術與相位重建28
    3-1光之干涉28
    3-2移相干涉術30
    3-2-1Hariharan相位還原演算法30
    3-2-2移相誤差32
    3-3相位跳躍與解纏繞34
    3-3-1調變2π相位校正34
    3-3-2Cellular automata之相位解纏繞36
    第四章Mach-Zehnder移相干涉影像系統39
    4-1表面電漿共振感測器設計與製作39
    4-1-1感測器設計40
    4-1-2感測器製作40
    4-2系統架構43
    4-2-1光學系統43
    4-2-2自動化系統整合45
    4-3實驗結果與討論47
    4-3-1相位差量測48
    4-3-2相位穩定量測52
    第五章共光程外差式干涉術相位量測55
    5-1共光程外差式干涉術原理56
    5-2系統架構57
    5-2-1外差光源58
    5-2-2光路配置58
    5-3相位解析61
    5-4實驗結果63
    5-4-1穩定度量測63
    5-4-2解析度量測64
    5-5實驗討論65
    第六章共光程液晶相位延遲移相干涉影像系統67
    6-1液晶可變相位延遲器68
    6-1-1基本原理68
    6-1-2液晶延遲器構成與驅動70
    6-1-3液晶可變延遲器驅動器72
    6-2系統架構73
    6-2-1光學架構73
    6-2-2利用干涉強度做五步相位的找尋74
    6-3實驗結果與討論77
    6-3-1五步相位與還原77
    6-3-2長時間相位穩定度量測78
    6-3-3解析度量測79
    6-3-4角度與相位關係量測81
    6-3-5奈米薄膜相位影像82
    6-4實驗討論83
    第七章結論85
    參考文獻87
    Reference [1]H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” Springer-Verlag, Berlin, 1988.
    [2]B. Liedberg, C. Nylander, and I. Lundsr, “Surface plasmon resonance for gas detection and biosensing,” Sensor and Actuators B, 4, 299-304, 1983.
    [3]J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B, 54, 3-15, 1999.
    [4]F.-M. Hsiu, S.-J. Chen, and C.-H. Tsai, “Surface plasmon resonance imaging system with Mach-Zehnder phase-shift interferometry for DNA micro-array hybridization,” Proc. SPIE, 4819, 167-174, 2002.
    [5]S.-J. Chen, F.-M. Hsiu, C.-Y. Tsou, Y.-C. Chen, F.-C. Chien, G.-Y. Lin, and Y.-D. Su, “Surface plasmon resonance phase-shift interferometry: Real-time DNA microarray hybridization analysis,” Journal of Biomedical Optics, 2003.
    [6]C. E. Jordan and R. M. Corn, “Surface plasmon resonance imaging measurement of electrostatic biopolymer adsorption onto chemically modified gold surface,” Anal. Chem., 69, 1449-1456, 1997.
    [7]P. I. Nikitin, A. N. Grigorenko, A. A. Beloglazov, M. V. Valeiko, A. I. Savchuk, O. A. Savchuk, G. Steiner, C. Kuhne, A. Huebner, and R. Salzer, “Surface plasmon resonance interferometry for micro-array biosensing,” Sensor and Actuators A, 85, 189-193, 2000.
    [8]A. G. Notcovich, V. Zhuk, and S. G. Lipson, “Surface plasmon resonance phase imaging,” Appl. Phys. Lett., 76, 1665-1667, 2000.
    [9]R.H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys.
    Rev., 106, 874, 1957.
    [10]C. J. Powell and J. B. Swan, “Effect of oxidation on the characteristics loss sepectra of aluminum and magnesium,” Phys Rev., 118, 640, 1960.
    [11]F. F. Bier, F. Kleinjung, and F. W. Scheller, “Real-time measurement of nucleic-acid hybridization using evanescent-wave sensors: steps towards the genosensor,” Sensors and Actuators B, 38-39, 378-382, 1997.
    [12]Z. Salamon, M. F. Brown, and G. Tollin, “Surface plasmon resonance spectroscopy: probing molecular interactions within membranes,” Trends in Biomedical Sciences, 24, 213-219, 1999.
    [13]G. Steiner, V. Sablinskas, A. Hubner, C. Kuhne, and R. Salzer, “Surface plasmon resonance imaging of microstructured monolayer,” J. Molecular Structure, 509, 265-273, 1999.
    [14]S.-J. Chen, F.-C. Chien, G.-Y. Lin, and K.-C. Lee, “Enhanced the resolution of surface plasmon resonance biosensors by controlling size and distribution of nanoparticles,” Optics Letters, 29(12), 1390, 2004.
    [15]H. P. Ho and W. W. Lam, “Application of differential phase measurement technique to surface plasmon resonance sensors,” Sensors and Actuators B, 96, 554-559, 2003.
    [16]S.-J. Chen, F.-M. Hsiu, C.-H. Tsai, C.-Y. Tsou, and C.-M. Tzeng, “Surface plasmon resonance phase-shift interferometry: Real-time DNA microarray hybridization analysis,” U.S. Patent Application Serial Number 60/367,890 (filed on March 26, 2003.)
    [17]陳顯禎、許峰銘、蔡建宏、鄒嘉原,“表面電漿共振影像系統及其感測方法”,ROC Patent Application, 125, 398, 2002.
    [18]K. Welford, “The method of attenuated total reflection,” IOP Short Meeting Series No.9, Institute of Physics, 25-78, 1987.
    [19]IOP Publishing Ltd, Surface Plasmon-polaritations, 1987.
    [20]A. Yariv and P. Yeh, Optical Waves in Crystals, John Wiley & Sons, New tork, 1984.
    [21]E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch, 23A, 2135-2136, 1968.
    [22]J. Homola and S. S. Yee, “Surface plasmon resonance sensors:review, ” Sensors and Actuators B, 54, 3-15, 1999.
    [23]R. W. Wood, “On a remarkable case of uneven distribution of light
    in a diffraction grating spectrum,” Phil. Magm., 4, 396–402, 1902.
    [24]A. Otto, “Excitation of surface plasma waves in silver by the
    method of frustrated total reflection,” Z. Physik, 216, 398–410, 1968.
    [25]E. Kretschmann and H. Raether, “Radiative decay of non-radiative
    surface plasmons excited by light,” Z. Naturforsch., 23A, 2135–2136, 1968.
    [26]Pharmacia Biosensor AB Product Catalog, 1995.
    [27]I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sensors and Autuators B, 54, 98-105, 1999.
    [28]B. Chadwick and M. Gal, “An optical temperature sensor using surface plasmons,” Jpn. J. Appl. Phys. Part1, 32, 2716-2717,1993.
    [29]V. E. Kochergin, A. A. Beloglazov, M. V. Valeiko, and P. I. Nikitin, “Phase properties of a surface-plasmon resonance from the viewpoint of sensor application,” Quantum Electronics, 28, 444-448, 1998.
    [30]M. A. Heald and J. B. Marion, Classical Electromagnetic Radiation, Saunders College, 3rd Ed., 1995.
    [31]P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Applied Optics, 26(13), 2504-2505, 1987.
    [32]J. Novak, ”Methods for 2-D phase unwrapping in matlab,” Department of Physics, Faculty of Civil Engineering, CTU in Prague, 2000.
    [33]R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry : two-dimensional phase unwrapping,” Radio Science, 23(4), 713-720, 1988.
    [34]D. C. Ghiglia, G. A. Mastin, and L. A. Romero, “Cellular-automata method for phase unwrapping,” J. Opt. Soc. Am.A, 4, 267-280, 1987.
    [35]P. Hariharan, “Basics of interferometry”, Academic Press, INC, 189, 66-77, 1991
    [36]I. C. Khoo, B. D. Guenther, M. V. Wood, P. Chen, and M. Y. Shih, “Coherent beam amplification with a photorefractive liquid crystal,” Optics Letters, 22, 1229-1231, 1997.
    [37]http://www.meadowlark.com/
    [38]I. C. Khoo, Liquid Crystals, John-Wiley, New York, 1995.
    Advisor
  • Tse-Liang Yeh(葉則亮)
  • Shean-Jen Chen(陳顯禎)
  • Files
  • 91323119.pdf
  • approve in 2 years
    Date of Submission 2004-07-19

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.