Title page for 91322063


[Back to Results | New Search]

Student Number 91322063
Author Chia-Ching Nu(杻家慶)
Author's Email Address s1322063@cc.ncu.edu.tw
Statistics This thesis had been viewed 2198 times. Download 774 times.
Department Civil Engineering
Year 2003
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Numerical Simulations of Coupled Surface Water and Subsurface Water at Basin Scale
Date of Defense 2004-06-21
Page Count 166
Keyword
  • distributed hydrological model
  • groundwater flow
  • hydrological cycles
  • Abstract Most hydrological models focus on rainfall-runoff simulations during extreme rainfalls, and neglect the subsurface regime and its interaction with surface water. For periods without rainfalls or right after extreme events, these models often fail to capture basin response due to the neglectness of groundwater discharge. In order to investigate the hydrological processes, including surface runoff, river flow, infiltration, evapotranspiration, and groundwater flow, at different temporal resolutions and the interactions within these processes, a coupled surface-water and subsurface-water model was developed in this study. Surface water module contains an overland runoff model and a river flow model. Subsurface water module considers the moisture content of unsaturated zone and the groundwater flow of saturated zone in an unconfined aquifer system. Surface water and subsurface water are fully coupled and allow for two-way interactions at spatially distributed grids in this newly developed model.
      The Shihmen Reservoir Watershed is the domain of interest in this study. Extreme rainfall events, recession periods after extreme rainfalls, and long term events are simulated by the coupled hydrological model developed in this study to investigate its applicability on modeling complicated hydrological cycles in real watersheds. The modeling errors of predicted reservoirs inflows are within acceptable tolerances for all events at different temporal scales. This demonstrate the coupled surface water and subsurface water modeling system is suitable for future investigation of watershed hydrological cycles at different temporal scales.
    Table of Content 目  錄
                                頁次
    摘要I
    ABSTRACTII
    目  錄III
    表目錄VI
    圖目錄VIII
    符號表XII
    第一章 緒論1
    1.1前言1
    1.2研究目的與方法2
    1.3本文架構3
    第二章 文獻回顧5
    2.1 水文模式分類5
    2.1.1 集塊式模式6
    2.1.2 分散式模式7
    2.2 河川模式10
    2.3 流向判斷12
    2.4 漫地流模式14
    2.4.1 國內之相關研究14
    2.4.2 國外之相關研究15
    2.5 蒸發散計算18
    2.5.1 Penman公式18
    2.5.2 Thornthwaite公式19
    2.5.3 Penman-Monteith 公式20
    2.5.4 Penman公式之改良21
    2.6 入滲計算22
    2.6.1 Green and Ampt 入滲公式22
    2.6.2 Horton’s入滲公式24
    2.6.3 Philip入滲公式24
    2.6.4 Mein與Larson入滲公式25
    第三章 研究方法27
    3.1地表水模式28
    3.1.1河川模式28
    3.1.2 漫地流模式34
    3.1.3漫地流模式與河川模式之結合40
    3.2 地下水模式43
    3.2.1 非飽和層地下水模式43
    3.2.2 飽和層地下水模式47
    3.3 模式接合與演算方法49
    3.3.1 地表水模式演算流程50
    3.3.2 地下水模式演算流程52
    第四章 模式測試與研究區域概述54
    4.1 模式測試54
    4.1.1 河川模式測試54
    4.1.2 耦合地表水與地下水模式之測試59
    4.2 研究區域概述77
    4.2.1 研究區域基本資料77
    4.2.2 土地利用與DTM數值地形79
    4.2.3 氣象資料82
    4.2.4土壤分類與地質資料83
    4.2.5 庫區界定87
    4.2.6 河川斷面資料88
    第五章 模式之檢定與驗證91
    5.1 參數檢定91
    5.1.1 地表曼寧粗糙係數檢定92
    5.1.2 河川曼寧粗糙係數檢定97
    5.1.3 濕峰土壤吸力水頭檢定100
    5.1.4 最終入滲率檢定104
    5.1.5 入滲遞減常數檢定107
    5.1.6底泥層厚度檢定110
    5.2 模式驗證113
    5.2.1 暴雨時期流量模擬113
    5.2.2 暴雨事件後洪峰退水段模擬134
    5.2.3 長期模擬137
    第六章 結論與建議140
    6.1 結論140
    6.2 建議142
    參考文獻143
    Reference 參考文獻
    1.王如意、易任,「應用水文學(下冊)」,國立編譯館,台北,第263-466頁(1988)。
    2.王如意、李如晃,「以修正型水筒模式研析颱洪事件之研究」,第八屆水利工程研討會論文集,臺灣大學,第71-78頁(1996)。
    3.行政院農業委員會,「台灣地區土壤分佈圖,桃園縣」,(1989)。
    4.行政院農業委員會,「台灣地區土壤分佈圖,新竹市、縣」,(1989)。
    5.李伯亨,「入滲效應與土石流發生臨界雨量線之探討及應用」,碩士論文,國立台北科技大學環境規劃與管理研究所,台北(2003)。
    6.沈榮茂、楊德良,「流域之漫地流有限元素模式及穩定性分析之研究」,第六屆水利工程研討會論文集(上),國立交通大學,第82-93頁(1992)。
    7.吳瑞賢,「工程水文學」,科技圖書股份有限公司,台北,第31-56頁(2001)。
    8.吳東雄,「石門水庫永續指標之建立與研究」,碩士論文,國立中央大學土木工程研究所,桃園(2002)。
    9.范純志,「氣候變遷對台灣地區地下水補注量之影響」,碩士論文,國立台灣大學農業工程研究所,台北(1998)。
    10.徐森雄、宋義達,「從氣象資料估算蒸發量」,中華水土保持學報,第十八卷,第二期,第83-89頁(1987)。
    11.夏禹九(譯),「蒸發散 —Penman公式的推演」,中華水土保持學報,第十三卷,第一、二期,第193-201頁(1982)。
    12.許銘熙、鄧慰先、黃成甲,「八掌溪流域洪水及淹水預報模式之研究(二)」,行政院國科會報告,台北(1996)。
    13.許少華、倪春發,「以理查氏方程式數值解比較常用入滲公式」,中國土木水利工程學刊,第十一卷,第二期,第327-336頁(1999)。
    14.黃裕群,「關刀溪森林集水區之蒸發散推估」,碩士論文,國立中興大學水土保持研究所,台中(1999)。
    15.黃誌川,「集水區降雨逕流時空分佈之模擬 —結合地文參數之不確定性分析」,博士論文,國立台灣大學地理環境資源研究所,台北(2002)。
    16.黃巧雲,「台灣地區重要水庫集水區永續指標建立與評量」,碩士論文,國立中央大學土木工程研究所,桃園(2002)。
    17.葉宗泰,「石門水庫集水區降雨逕流模擬」,碩士論文,國立中央大學土木工程研究所,桃園(2003)。
    18.經濟部水利署網站(www.wra.gov.tw),(2004)。
    19.經濟部水利署北區水資源局網站(www.wranb.gov.tw),(2004)。
    20.簡名毅,「鹽水溪流域洪水與淹水演算模式」,碩士論文,國立台灣大學農業工程研究所,台北(1999)。
    21.謝兆申、王明果,「台灣地區主要土類圖輯」,國立中興大學土壤調查試驗中心,台中,第224-259頁(1991)。
    22.顏清連,「防洪科技之研發與落實」,第九屆水利工程研討會論文集,中央大學,第21-30頁(1998)。
    23.Akan, A.O., and Yen, B.C. , “Diffusion-wave flood routing in channel networks,” Journal of the Hydraulic Division , ASCE ,Vol.107, N0.HY6 , pp.719-731(1981).
    24.Beven, K.J., and Wood, E.F., “Catchment geomorphology and dynamics of runoff contributing areas,” Journal of Hydrology, Vol. 65, pp. 139-158(1983).
    25.Beven, K.J., and Moore, I.D., “Terrain analysis and distributed modeling in hydrology, ”Chichester:John Wiley & Sons Ltd , pp.7-34(1992).
    26.Chow, V.T. , Maidment, D.R., and Mays, L.W. , “Applied hydrology ,” Singapore:McGraw-hill,pp.99-126(1988).
    27.Campbell, C.W., and Sullivan, S.M., “Simulating time-varying cave flow and water levels using the Storm Water Management Model,” Engineering Geology, Vol 65 , pp 133-139(2002).
    28.Diskin, M. H., and Pegram, G. G. S. , “A Study of Cell Models, 3. A Pilot Study on the Calibration of Manifold Cell Models in the Time Domain and in the Laplace Domain,” Water Resources Research, Vol. 23, No. 4, pp. 663-673 (1987).
    29.Dolciné, L., Andrieu, h., Sempere-Torres, D., and Creutin, D., “Flash flood forecasting with coupled precipitation model in mountainous Mediterranean basin,” Journal of Hydrologic Engineering ASCE, Vol.6, No.1, pp.1-10 (2001).
    30.Dutta, D. , Herath, S., and Musiake, K., “Flood inundation simulatiom in river basin using a physically based distributed hydrological model,” Hydrological Processes , Vol.14, pp. 497-519(2000).
    31.Dingman, S.L., “Physical hydrology(2nd edition)” USA: Prentice Hall, pp.586-600(2002).
    32.Freeze, R.A., and Harian, R. L., “Biueprint for a physically-based digitally-simulated hydrologic response model,” Journal of Hydrology, Vol. 9, pp. 237-258(1969).
    33.Fread, D. L., “Discussion of ‘Implicit flood routing in natural channels.’ By M. Amein and C. S. Fang.,” Journal of Hydraulic Engineering, ASCE, Vol. 97, No. 7, pp. 1156-1159 (1971).
    34.Fennema, R. J., and Chaudhry, M. H., “Explicit numerical schemes for unsteady free-surface flows with shocks,” Water Resources Research, Vol. 22, No. 13, pp. 1923-1930 (1986).
    35.Fennema, RJ., and Chaudhry, MH., “Implicit methods for two-dimesional unsteady free-surface flows,” Journal of the Hydraulic Research, Vol.27, pp. 321-332 (1989).
    36.Freeman, T. G., “Calculating catchment areas with divergent flow based on a regular grid,” Computers and Geosciences, Vol. 17, No.3, pp. 413-422 (1991).
    37.Hromadka Ⅱ, T. V., and Whitley, R.J.,” On formalization of unit-hydrograph and link-node hydrograph-routing systems,” Journal of Hydrology, Vol.223, pp. 66–84(1999).
    38.Hsu, S.M., Ni, C.F., and Hung, P.F., ” Assessment of Three Infiltration Formulas based on Model Fitting on Richards Equation,” Journal of Hydrologic Engineering, ASCE,Vo7 , Number 5, pp.373-379(2002).
    39.Jasper, K., Gurtz,J., and Lang, H., “Advanced flood forecasting in Alpine watersheds by coupling meteorological observations and forecasts with a distributed hrdrological model,” Journal of Hydrology ,Vol. 267 , pp.40-52 (2002).
    40.Jayatilaka, C.J., and Storm, B., Mudgway, L.B., “Simulation of water flow on irrigation bay scale with MIKE-SHE,” Journal of Hydrology ,Vol. 208 , pp.108-130 (1998).
    41.Jia, Y. , Ni,G. , Yoshitani,J. , Kawahara,Y., and Kinouchi,T. ,“Coupling simulation of water and energy budgets and analysis of urban development impact,” Journal of Hydrologic Engineering ASCE, Vol.7 , pp.302-311(2002).
    42.Leconte, R., and Brissette, F.P. , “Soil moisture profile model for two-layer soil based on sharp wetting front approach,” Journal of hydrologic engineering ASCE, Vol.6 , No. 2, pp.141-149(2001).
    43.Li, L., Lockington, D. A., Parlange, J. Y., and Perrochet, P., “Confined-unconfined flow in a horizontal confined aquifer,” Journal of hydrology, Vol.271, pp.150-155(2003).
    44.Molnár, D.K., and Julien , P.Y. , “Grid-size effects on surface runoff modeling,”Journal of Hydrologic Engineering ASCE, Vol.5, No.1, pp.8-16 (2000).
    45.O’Callaghan, J. G., and Mark, D. M., “The extraction of drainage networks from digital elevation data,” Computer Vision, Graphic and Image Processing, Vol. 28, pp. 323-344 (1984).
    46.Pegram, G. G. S. and M. H. Diskin, “ A Study of Cell Models, 1. A Manifold Cell Model for Distributed Surface Runoff Systems,” Water Resources Research, Vol. 23, No. 4, pp. 646-654 (1987).
    47.Pegram, G. G. S. and M. H. Diskin, “ A Study of Cell Models, 2. The Effect of Time Delay on the Limiting Forms OF Cascade and Manifold Cell Model Response Functions,” Water Resources Research, Vol. 23, No. 4, pp. 655-622 (1987).
    48.Quinn, JP. F., Beven, K. J., Chevallier, P., and Planchon, O., “The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain model,” Hydrological Processes, Vol. 5, pp. 59-79 (1991).
    49.Viessman, W., and Lewis,G.L., “Introduction to hydrology(6th edition),” USA: Prentice Hall, pp.181-194(2003).
    50.Xu, Z.X., and Li, J.Y., “Estimating basin evaportranspiration using distributed hydrologic model,” Journal of hydrologic engineering ASCE, Vol.8 , pp.74-80(2003).
    51.Sun, H., Comish, P. S., and Daniell, T. M., “Spatial variability in hydrologic modeling using rainfall-runoff model and digital elevation model,” Journal of hydrologic engineering ASCE, Vol.7, No.6, pp.404-412(2002).
    52.Syed, K. H., Goodrich, D. C., Myers, D. E., and Sorooshian, S., “Spitial characteristics of thunderstorm rainfall fields and their relation to runoff,” Journal of hydrology, Vol.271, pp.1-21(2003).
    53.Tracy, F. T., “1-D, 2-D, and 3-D analytical solutions of unsaturated flow in groundwater,” Journal of hydrology, Vol.170, pp.199-214(1995).
    54.Tribe, A., “Automated recognition of valley lines and drainage networks from grid digital elevation models: a review and a new method,” Journal of Hydrology, Vol. 139, No. 3, pp. 263-293 (1992).
    55.Xanthopoulos, TH., and Koutitas, CH., “Numerical Simulation of Two-Dimensional Flood Wave Propagation due to Dam Failure,” Journal of Hydraulic Research, Vol. 14, pp. 321-331 (1976).
    56.Zhang, W., and Cundy, TW., “Modeling of two-dimensional overland flow,” Water Resources Research, Vol. 25, No. 9, pp. 2019-2035 (1989).
    Advisor
  • Ray-Shyan Wu(吳瑞賢)
  • Files
  • 91322063.pdf
  • approve immediately
    Date of Submission 2004-07-09

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.