Title page for 91322037


[Back to Results | New Search]

Student Number 91322037
Author Ming-Feng Kuo(郭明峰)
Author's Email Address s1322037@cc.ncu.edu.tw
Statistics This thesis had been viewed 2354 times. Download 1622 times.
Department Civil Engineering
Year 2003
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title The compaction properties of bentonite-crushed rock mixtures
Date of Defense 2004-07-07
Page Count 136
Keyword
  • Bentonite
  • Buffer material
  • Compaction
  • Compaction curve
  • Wall fraction
  • Abstract Buffer materials are used to retard the migration of radionuclides emitted from high level wastes in a repository. Bentonite is the primary candidate for the buffer materials at the present day. The uniaxial compaction method is generally used to produce the bentonite block. The wall friction is produced between the materials and the compaction mold during the compaction process, so we can’t obtain the relationship between the actual compaction stress and the density of the bentonite block. The first target for this study is to search the literature of compaction techniques for buffer materials. Designing the compaction mold according to the concept of uniaxial compaction method. Adopting the direct method to measure the wall friction during bentonite block compaction and ejection. Using the compression equation developed by Gurnham to obtain the friction-free compressive curve of bentonite block. To analyze and discuss the effects that will influence the compaction behavior. To examine the effect of crushed rock content on the compaction characteristics, a series of uniaxial compaction tests for bentonite-crushed rock mixtures with different sand fractions (by weight) were performed. A prediction model based on micromechanics for predicting the compaction curves of bentonite-crushed rock mixtures was proposed by Tien et al. (2004).
    Table of Content 中文摘要I
    英文摘要II
    誌 謝III
    目 錄IV
    圖目錄VIII
    表目錄XII
    第一章 緒 論1
    1.1 研究動機與目的1
    1.2 研究方法2
    1.3 論文內容2
    第二章 文獻回顧4
    2.1 放射性廢棄物簡介4
    2.2 放射性廢棄物處置概念5
    2.2.1 低放射性廢棄物處置5
    2.2.2 高放射性廢棄物處置7
    2.3 緩衝材料之概念與功能9
    2.4 緩衝材料壓實技術分類11
    2.5 壁面摩擦效應對單軸壓實法壓製塊體之影響15
    第三章 壁面摩擦力量測方法及壓實模具設計16
    3.1 壁面摩擦力量測方法及量測誤差比較16
    3.1.1 間接量測法16
    3.1.2 直接量測法18
    3.1.3 誤差來源與量測誤差比較20
    3.1.3.1 壁面摩擦力量測誤差比較20
    3.1.3.2 密度量測誤差比較25
    3.1.3.3 推出力量測誤差比較30
    3.1.4 綜合討論32
    3.2 壓實模具設計33
    3.2.1 壓實模具設計概念34
    第四章 試驗材料、儀器及試驗程序37
    4.1 試驗材料選取37
    4.1.1 美國皂土37
    4.1.2 日興土37
    4.1.3 花崗岩碎石40
    4.2 材料準備41
    4.2.1 膨潤土41
    4.2.2 花崗岩碎石45
    4.3 試驗儀器設備45
    4.3.1 壓力系統45
    4.3.2 環型荷重計47
    4.3.3 位移計47
    4.3.4 資料擷取系統48
    4.3.5 顎式碎石機49
    4.4 壓實試驗程序49
    4.4.1 膨潤土塊體壓實程序49
    4.4.2 膨潤土塊體推出程序50
    第五章 壓縮曲線特性52
    5.1 壓縮方程式52
    5.2 無摩擦力影響之壓縮曲線52
    5.2.1 求取無摩擦力影響之壓縮曲線的方法54
    5.2.1.1 選用之壓縮方程式54
    5.2.1.2 不同膨潤土重量壓實試驗(壁面無潤滑情況)54
    5.2.1.3 不同膨潤土重量壓實試驗(壁面潤滑情況)64
    5.2.2 綜合討論69
    5.3 影響壓實行為之因素70
    5.3.1 壓實速率70
    5.3.2 壁面條件75
    5.3.3 膨潤土重量81
    5.3.4 碎石含量86
    5.3.5 碎石粒徑92
    5.3.6 含水量96
    第六章 模式預測皂土-碎石混合物之壓縮曲線103
    6.1 微分模式基本概念106
    6.2 加壓階段模擬109
    6.3 預測成果說明111
    第七章 結論與建議116
    7.1 結論116
    7.2 建議118
    參考文獻119
    Reference [1] 田永銘,「緩衝材料之壓實性質與其特性初步探討」,行政院原子能委員會委託研究計畫研究報告,中壢(2003)。
    [2] 邱太銘,放射性廢棄物管理,中興工程科技研究發展基金會,台北(2002)。
    [3] 莊文壽、洪錦雄、董家寶,「深層地質處置技術之研究」,核研季刊,第三十七期,第44-54頁(2000)。
    [4] 譚建國、王永明,多相複合材料之微分模式 I.整體彈性係數,中國工程學刊,第六卷,第二期,pp. 73-82 (1983)。
    [5] Adams, M. J., McKeown, R., “Mocromechanical analysis of the pressure-volume relationships for powders under confined uniaxial compression,” Powder Technology, Vol. 88, pp. 155-163 (1996).
    [6] Boonsinsuk, P., Pulles, B. C., Kjartanson, B. H., and Dixon, D. A., “Prediction of compactive effort for a bentonite-sand mixture,” 44th Canadian Geotechnical Conference Volume 2, Alberta, Canada, pp. 64.1-64.12 (1991).
    [7] Briscoe, B. J., and Rough, S. L., “The effects of wall friction in powder compaction,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol, 137, pp. 103-116 (1998).
    [8] Chinh, P. D., “Weighted self-consistent approximations for elastic completely random mixtures,” Mechanics of Materials, Vol. 32, pp. 463-470 (2000).
    [9] Christensen, R. M., “A critical evaluation for a class of micromechanics models,” J. Mech. Phys. Solids, Vol. 38, No. 3, pp. 379-404 (1990).
    [10] Denny, P. J., “Compaction equations : a comparison of the Hechel and Kawakita equations,” Powder Technology, Vol. 127, pp. 162-172 (2002).
    [11] Figliola, R. S., and Beasley, D. E., Theory and design for mechanical measurements. John Wiley & Sons, U. S. (1995).
    [12] Guyoncourt, D. M. M., Tweed, J. H., Gough, A., Dawson, J., and Pater, L., “Constitutive data and friction measurements of powders using instrumented die.” Powder Metallurgy, Vol. 44, No. 1, pp. 25-33(2001).
    [13] Hashin, H., “Analysis of composite materials–A Survey,” Journal of Applied Mechanics. Vol. 50, pp. 481-505 (1983).
    [14] Japan Nuclear Cycle Development Institute, Repository design and engineering technology. JNC Supporting Report 2, Japan (1999).
    [15] Johannesson, L. E., Börgesson, L., Sanden, T., Compaction of bentonite blocks – development of technique for industrial production of blocks which are manageable by man. SKB technical report TR 95-19, Swedish (1995).
    [16] Johannesson L. E., Compaction of full size blocks of bentonite for the KBS-3 concept – initial tests for the evaluating the technique. SKB technical report R 99-66, Swedish (1999).
    [17] Johannesson, L. E., Nord, S., Pusch, R., Sjöblom, R., Isostatic compaction of beaker shaped bentonite blocks on the scale 1:4. SKB technical report TR 00-14, Swedish (2000).
    [18] Klemm, U., Sobek, D., Schone, B., and Stockmann, J., “Friction measurements during dry compaction of silicon carbide,” Journal of the European Ceramic Society, Vol. 17, pp. 141-145(1997).
    [19] Li, Y., Liu, H., Rockabrand, A., “Wall friction and lubrication during compaction of coal logs,” Powder technology, Vol. 87, pp.259-267 (1996).
    [20] Macleod, H. M., and Marshall, K., “The Determination of density distribution in ceramic compacts using autoradiography,” Powder Technology, Vol. 16, pp. 107-122(1977).
    [21] Marcial, D., Delage, P., and Cui, Y. J., “On the high stress compression of bentonites,” Canadian Geotechnical Journal, Vol. 39, pp. 812-820 (2002).
    [22] Mclaughlin, R., “A study of the differential scheme for composite materials,” Int. J. Engng. Sci. Vol. 15, pp. 237-244 (1977).
    [23] Michel, J-C., “A self-consistent estimate of the non-linear properties of isotropic two-phases composites,” Vol. 58, pp. 753-758 (1998).
    [24] Nemat-Nasser, S., Hori, M., Micro-mechanics: overall properties of heterogeneous materials. Elsevier, Amsterdam (1993).
    [25] Nedderman, R. M., Statics and kinematics of granular materials. Cambridge University Press, U.K (1992).
    [26] Norris, A. N., “A differential scheme for the effective moduli of composites,” Mechanics of materials, Vol. 4, pp. 1-16 (1985).
    [27] Omine, K., Ochiai, H., and Yoshida, N., “Estimation of in-situ strength of cement-treated soils based on a two-phase mixture model,” Soils and foundations. Vol. 38, No. 4, pp. 17-29 (1998).
    [28] Panelli, R., Filho, F. A., “A study of a new phenomenological compacting equation,” Powder Technology, Vol. 114, pp. 255-261 (2001).
    [29] Roure, S., Bouvard, D., Doremus, P., and Pavier, E., “Analysis of die compaction of tungsten carbide and cobalt powder mixtures,” Powder Metallurgy, Vol. 42, No. 2, pp. 164-170(1999).
    [30] Stanley-Wood, N. G., Enlargement and compaction of particulate solids, Butterworths, U.K. (1983).
    [31] Tien, Y. M., Wu, P. L., Chuang, W. S., and Wu, L. H., “Micromechanical Model for Compaction Characteristics of Bentonite-Sand Mixtures,” Applied Clay Science (accepted).
    [32] Tien, Y. M., Wu, P. L., and Kuo, M. F., “The measuring method for wall friction during bentonite block compaction and ejection,” Proceedings of the 5th Asian Young Geotechnical Engineers Conference, Taipei, Roc, pp. 187-194(2004).
    [33] W. L. wardrop & Associates Ltd, Buffer and backfilling systems for a nuclear fuel waste disposal vault. AECL technical record TR-341, Canada (1985).
    [34] Wu, T. T., “The effect of inclusion shape on the elastic moduli of a two-phase material,” Int. J. Solids Structure, Vol. 2, pp. 1-8 (1966).
    [35] Yong, R. N., Boonsinsuk, P., and Wong, G., “Formulation of backfill material for nuclear fuel waste disposal valut,” Canadian Geotechnical Journal, Vol. 23, pp. 216-228(1986).
    [36] Zhao, X. H., Chen, W. F., “The effective elastic moduli of concrete and composite materials,” Composites Part B, Vol. 29B, pp. 31-40 (1998).
    Advisor
  • Yong-Ming Tien(田永銘)
  • Wei-Hsing Huang(黃偉慶)
  • Files
  • 91322037.pdf
  • approve immediately
    Date of Submission 2004-07-19

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.