Title page for 91236002


[Back to Results | New Search]

Student Number 91236002
Author Jeng-Feng You(游政峰)
Author's Email Address No Public.
Statistics This thesis had been viewed 1753 times. Download 1262 times.
Department Optics and Photonics
Year 2004
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title 光子晶體異常折射之研究
Date of Defense 2005-06-22
Page Count 68
Keyword
  • 光子晶體
  • 異常折射
  • 負折射
  • Abstract 負折射研究在2003年被科學(Science)雜誌選為十大科技成果之一,而光子晶體是能達成負折射現象的其中一個方法。本論文從光子晶體的基本理論談起,並應用用時域有限差分法(FDTD)於光子晶體發生負折射的頻段,驗證光子晶體的負折射理論。文中比較了理論預測與FDTD模擬結果在幾個情況下的差異性。我們首先改變光子晶體表面,並觀察其對負折射的影響。之後我們探討在負折射的情況下,能流在光子晶體內流動的空間分布特性,以及其與介電質柱之關係。而我們也利用此特性重新解釋了在三角晶格光子晶體中,當電磁波沿 方向入射時,其負折射的異常現象。
    Table of Content 摘要...................................................................Ⅰ
    目錄.................................................................Ⅱ
    圖索引...............................................................Ⅳ
    第一章 緒論…………………………………………………………………………..1
    1﹒1光子晶體的發展…………………………………………………………..1
    1﹒2光子晶體的理論工具……………………………………………………..2
    1﹒2﹒1平面波展開法……………………………………………………2
    1﹒2﹒2時域有限差分法…………………………………………………3
    1﹒3負折射的原理………………………………………………………………4
    第二章 光子晶體理論架構…………………………………………………………..7
    2﹒1光子晶體的概念……………………………………………………………7
    2﹒2一維光子晶體的傳輸矩陣法………………………………………………7
    2﹒3波動方程式………………………………………………………………...11
    2﹒4光子晶體的平面波展開法……………………………………………….13
    第三章 FDTD理論架構…………………………………………………………….15
    3﹒1馬克斯威爾方程式……………………………………………………….15
    3﹒2基本理論………………………………………………………………….15
    3﹒3穩定條件………………………………………………………………….17
    3﹒4邊界理論………………………………………………………………….18
    3﹒4﹒1 Mur邊界理論………………………………………………….19
    3﹒4﹒2 Berenger的PML邊界理論…………………………………..20
    3﹒5時域有限差分法的二維平面程式……………………………………….25
    3﹒5﹒1 Ez、Hx、Hy的計算……………………………………………25
    3﹒5﹒2 邊界處理……………………………………………………….28
    第四章 光子晶體的負折射研究……………………………………………………32
    4﹒1光子晶體的負折射理論………………………………………………….32
    4﹒1﹒1光子晶體的負折射理論驗證(正方晶格)…………………..35
    4﹒1﹒2光子晶體的負折射理論驗證(三角晶格)…………………..41
    4﹒2光子晶體的負折射表面特性探討……………………………………….46
    4﹒3光子晶體負折射能流探討……………………………………………….50
    4﹒4光子晶體負折射柱子間的電容效應…………………………………….57
    第五章 結論…………………………………………………………………………63
    參考資料……………………………………………………………………………..66
    Reference [ 1 ] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
    [ 2 ] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
    [ 3 ] C. M. Soukoulis(ed.),Photonic Crystals and Light Localization in the 21 st Centry( NATO Advanced Study Institute on Photonic Crystals and Light localization)
    [ 4 ] M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap”, Phys. Rev. B 62, 10696 (2000).
    [ 5 ] Chiyan Luo et. al.,Phys. Rev. B 65, 201104 (2002); Appl. Phys. Lett. 81, 2352 (2002)
    [ 6 ] A. A. Krokhin, P. Halevi, and J. Arriaga, “Long-wavelength limit (homogenization) for two-dimensional photonic crystals”, Phys. Rev. B. 65, 115208 (2003) .
    [ 7 ] A. Yariv, P. Yeh, Optical Waves in Crystals, John Wiley & Sons, New York, 1984.
    [ 8 ] Pi-Gang Luan and Zhen Ye, “Acoustic wave propagation in a one-dimensional layered system”, Phys. Rev. E 63, 066611 (2001).
    [ 9 ] J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals—Molding the Flow of Light, Princeton University Press, 1995.
    [ 10 ] K. Sakoda, Optical Properties of Photonic Crystals, Springer, Berlin, 2001.
    [ 11 ] Bikash C. Gupta, Chao-Hsien Kuo, and Zhen Ye, “Propagation inhibition and localization of electromagnetic waves in two- dimensional random dielectric systems”, Phys. Rev. E 69, 066615 (2004).
    [ 12 ] Allen Taflove, Ausan C. Hagness, “Computational Electrodynamics : The Finite-Difference Time-Domain Method”
    [ 13 ] 林振華編譯, “電磁場與天線分析-使用時域有限差分法”, 全華科技
    [ 14 ] V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of and ”, Sov. Phys. USPEKHI 10, 509 (1968).
    [ 15 ] R. A. Shelby, D. R. Smith and S. Schultz, Science 292, 77 (2001).
    [ 16 ] Chiyan Luo, Steven G. Johnson, and J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index”, Phys. Rev. B 65, 201104 (2002); Chiyan Luo, Steven G. Johnson, and J. D. Joannopoulos, “All-angle negative refraction in a three-dimensionally periodic photonic crystal”, Appl. Phys. Lett. 81, 2352 (2002).
    [ 17 ] C. Kittel, Introduction to Solid State Physics, 8th Ed., John Wiley & Sons, USA, 2005.
    [ 18 ] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. AP-14, pp. 302-307, 1966.
    [ 19 ] G. Mur, “Absorbing boundary conditions for the finite-difference time-domain approximation of the time domain electromagnetic field equations,” IEEE Trans. Electromagn. Compat., vol. EMC-23, pp. 377-382, 1981.
    [ 20 ] Holland, R. and J. Williams, “Total-field versus scattered-field finite-difference,” IEEE Trans. Nuclear Science, Vol. 30, 1983, pp. 4583-4587
    [ 21 ] Berenger, J. P., “A perfectly matched layer for the absorption of electromagnetic waves,” J. Computat. Phys., vol. 114, pp. 185-220, 1994.
    [ 22 ] Berenger, J. P., “Perfectly matched layer for the FDTD solution of waves-structure interaction problems ,” IEEE Trans. Antennas and Propagation, Vol. 51, 1996, pp. 110-117
    [ 23 ] Berenger, J. P., “A perfectly matched layer for free-space simulations in finite-difference computer codes,” Annales des Telecommunications, Vol. 51, 1996, pp. 39-46
    [ 24 ] D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz “Composite Medium with Simultaneously Negative Permeability and Permittivity”, Phys. Rev. Lett. 84, 4184 (2000).
    [ 25 ] J. B. Pendry, “Negative Refraction Makes a Perfect Lens”, Phys. Rev. Lett. 85, 3966–3969 (2000).
    [ 26 ] Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, Stavroula Foteinopoulou, Costas M. Soukoulis, “Negative refraction by photonic crystals”, Nature 423, 604 (2003).
    [ 27 ] E. Cubukcu, K. Aydin., E. Ozbay, “Subwavelength Resolution in a two-Dimensional Photonic-Crystal-Based Superlens” , Phys. Rev. Lett. 91, 207401 (2003).
    [ 28 ] A. Martinez, H. Miguez, A. Griol, and J. Marti, “Experimental and theoretical analysis of the self-focusing of light by a photonic crystal lens”, Phys. Rev. B. 69, 165119 (2004).
    Advisor
  • Pi-Gang Luan(欒丕綱)
  • Files
  • 91236002.pdf
  • approve immediately
    Date of Submission 2005-07-05

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.