Title page for 91229003


[Back to Results | New Search]

Student Number 91229003
Author Ting-Chang Yang(x)
Author's Email Address No Public.
Statistics This thesis had been viewed 3219 times. Download 1048 times.
Department Graduate Institute of Astronomy
Year 2004
Semester 1
Degree Master
Type of Document Master's Thesis
Language English
Title The Study of Optical Variations of LMXB with LOT V XTE J1118+480 (KV UMa)
Date of Defense 2004-10-07
Page Count 70
Keyword
  • LMXB
  • superhump
  • XTE J1118+480
  • Abstract We observed the low mass X-ray binary (LMXB) -- XTE J1118+480 in optical band with Lulin One-meter Telescope for its timing series properties. Zurita et al. (2002) found XTE J1118+480 still revealed superhump phenomenon near the quiescent state in 2001. We try to observe it with LOT to verify if there are superhumps in the fully quiescent state, and to distinguish if the source is a permanent superhump or late superhump system.
    We use and setup the standard procedures, including data reductions and the CL scripts for the photometry, to accelerate the processes for the photometric data. Differential photometry is applied to measure the intensity variations of the target star, so the selection for proper comparison stars is rather important. We propose some suggestions for selecting the comparison stars to avoid the disturbances for the timing series analysis.
    The companion star of LMXB is dominated in the optical observation. Because of proper geometry relation between the binary and observor, the light curve will show ellipsoidal modulation. Ellipsoidal modulation implies the orbital period of the binary system. We can derive the orbital period from our observation for about one and half years, and discuss about the evolution of the orbital period. We mainly use Lomb-Scargle (LS) power spectrum for the periodicity analysis, and derive the signal frequency error from Monte Carlo simulation. For the observation from 2003 to 2004, the observation data is divided into five data sets, and the best estimated orbital period is about 0.16993349 +/- 0.00000090 day by the phase analysis method. The result is consistent with that of Zurita et al. (2002). It is verified that there are no significant change for the orbital period (.P~ 0) during the 2001-2004 observation. The result is consistent with the small period change (.P/ P~ 10^-7 to 10^-8 yr^-1) of LMXB system.
    We can fit an first order approximated model of ellipsoidal modulation with the best estimated orbital period. Subtracting the modeled light curve from the origin one, there maybe superhump signals left in the residual light curves. But after our analysis of power spectrum, there is no significant detection near the superhump frequency and its harmonics of Zurita et al. (2002). Thus, we can not detect superhump signals with LOT from more than one year observations. From the variation shape of the light curves, we consider that the accretion disk of the system contributes too less intensity for the optical light curve, so the superhump signals can not be detected. We can not conclude that if XTE J1118+480 is a late superhump or permanent superhump system. It maybe need better instruments or analytical methods to improve this.
    Table of Content 1 Introduction 1
    1.1 Basic of Low Mass X-ray Binary . . . . . . . . . . . . . . . . . . . . . . . . . 1
    1.2 Soft X-ray Transient (SXT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
    1.3 Superhumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
    1.3.1 Superhumps in Cataclysmic Variables . . . . . . . . . . . . . . . . . . 4
    1.3.2 Superhumps in LMXBs . . . . . . . . . . . . . . . . . . . . . . . . . . 4
    1.4 XTE J1118+480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
    1.5 Summary of the Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
    2 Observation 10
    2.1 Lulin Front Mountain Observatory . . . . . . . . . . . . . . . . . . . . . . . 10
    2.2 Lulin One-meter Telescope and Instruments . . . . . . . . . . . . . . . . . . 11
    2.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
    2.3.1 Observation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
    2.3.2 Observation Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
    2.3.3 Some Problems during the Observations . . . . . . . . . . . . . . . . 15
    2.4 LMXB and CV Observation Project . . . . . . . . . . . . . . . . . . . . . . . 17
    I
    CONTENTS
    2.4.1 2003 { 2004 Observations . . . . . . . . . . . . . . . . . . . . . . . . 17
    2.4.2 KV UMa (XTE J1118+480) . . . . . . . . . . . . . . . . . . . . . . . 18
    3 Calibration and Photometry 21
    3.1 CCD Images and FITS Format . . . . . . . . . . . . . . . . . . . . . . . . . 23
    3.2 Data Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
    3.2.1 Bias Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
    3.2.2 Dark Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
    3.2.3 Flat Field Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
    3.3 Aperture Photometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
    3.3.1 APPHOTX & DAOPHOTX . . . . . . . . . . . . . . . . . . . . . . . 27
    3.3.2 DAOPHOTX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
    3.4 PSF Fitting for the Photometric Data . . . . . . . . . . . . . . . . . . . . . 29
    3.5 CL Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
    3.6 Comparison Star Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
    3.7 Di erential Photometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
    4 Timing Analysis 33
    4.1 Trend Removing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
    4.2 Periodicity Analysis { LS Periodogram & PDM . . . . . . . . . . . . . . . . 34
    4.2.1 Lomb-Scargle Peridogram . . . . . . . . . . . . . . . . . . . . . . . . 34
    4.2.2 Phase Dispersion Minimization . . . . . . . . . . . . . . . . . . . . . 35
    4.3 Ellipsoidal Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
    4.4 Monte Carlo Simulation for the Frequency Error and False Alarm Probability 40
    II
    CONTENTS
    4.4.1 Simulation of Light Curves . . . . . . . . . . . . . . . . . . . . . . . . 40
    4.4.2 Box-Muller Transformation . . . . . . . . . . . . . . . . . . . . . . . 40
    4.4.3 Error Estimation of Signal Frequency . . . . . . . . . . . . . . . . . . 41
    4.4.4 Frequency Signal Distribution . . . . . . . . . . . . . . . . . . . . . . 41
    4.5 Best Estimated Orbital Period and Ephemeris . . . . . . . . . . . . . . . . . 47
    4.5.1 Phase and Time Relation . . . . . . . . . . . . . . . . . . . . . . . . 47
    4.5.2 Phase Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
    4.5.3 P= const Model and O-C Method . . . . . . . . . . . . . . . . . . . 48
    4.5.4 Linear Ephemeris of KV UMa . . . . . . . . . . . . . . . . . . . . . . 49
    4.6 Residual Light Curve Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 51
    5 Discussion 61
    5.1 The Prospective Improvements . . . . . . . . . . . . . . . . . . . . . . . . . 61
    5.1.1 Extinction Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
    5.1.2 DC Term Removing for the Light Curve . . . . . . . . . . . . . . . . 62
    5.1.3 The Photometric Error . . . . . . . . . . . . . . . . . . . . . . . . . . 62
    5.2 The Accretion Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
    5.3 The Ephemeris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
    5.4 Light Curves with Unusual Shapes in 2004 March Observations . . . . . . . 66
    Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
    Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
    Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
    Reference [01] R.I. Hynes, 1999, PHD Thesis, Faculty of Science, The Open University
    [02] F. Mayer, in Mineshige S., Wheeler J.C., eds, Disk Instabilities in Close Binary Systems,
    Universal Academy Press, p.209
    [03] Brun & Petit, 1952
    [04] Whitehurst et al., 1988, MNRAS, 232, 35
    [05] Patterson et al., 2003, PASP, 115, 1308
    [06] E.J. Rolfe et al. 2000, MNRAS, 324, 529
    [07] Chou et al., 2001, ApJ, 563, 934
    [08] Retter et al., 2001, AA, 365, 508
    [09] Haswell et al., 2001, MNRAS, 321, 475
    [10] Charles, 1998, in Abramowicz M.A., Bjornsson G., Pringle J.E., eds, Theory of Black
    Hole Accretion Disks. Cambridge Univ. Press, Cambridge, P. 1
    [11] van Paradijs, 1995, in Lewin W.H.G., van Paradijs J., van den Heuvel E.P.J., eds, X-ray
    Binaries. Cambridge Univ. Press, Cambridge
    [12] van Paradijs, 1996, ApJ, 464, L139
    [13] Kato, Mineshige & Hirata, 1995, PASJ, 47, 31
    [14] Bailyn, C.D., 1992, ApJ, 391, 298
    [15] Charles, P.A. et al., 1991, MNRAS, 249, 567
    [16] O'Donoghe, D. & Charles, P.A., 1996, MNRAS, 282, 191
    [17] Zurita, C., 2002, MNRAS, 333, 791
    [18] R. Remillard et al., 2000, IAU Circ. 7389
    [19] Uemura et al., 2000, IAUC., 7390, 1
    [20] Pooley et al., 2000, IAUC., 7390, 2
    [21] Hynes et al., 2000ApJ, 539, 37
    [22] McClintock et al., 2001, ApJ, 551, L147
    [23] Cook et al., 2000, IAUC., 7397, 2
    [24] Patterson et al., 2000, IAUC., 7412, 2
    [25] Uemura et al., 2000, IAUC., 7418, 2
    [26] McClintock et al., 2001, ApJ, 551, L147
    [27] Wagner et al., 2001, ApJ, 556, 42
    [28] Warner, 1985, proc, 367
    [29] Orosz, 2001, ATel, 67, 1O
    [30] Sikllman et al., 1999, PASP, 111, 1281
    [31] Hun-Chin Lin, 1994, Thesis of Master Degree, Institute of Astronomy, National Central
    University
    [32] M.Uemura et al, 2000, PASJ, 52, L15
    [33] Steve B.Howell, 2000, "Handbook of CCD Astronomy"
    [34] NOST, 1999, "De nition of the Flexible Image Transport System (FITS)"
    [35] Wells, D.C., Grisen, E.W., and Harten, R.H. 1981, "FITS: A Flexible Image Transport
    System," Astron. Astrophys. Suppl.44, 363-370
    [36] Lindsey E.Davis, 1994, "A Reference Guide to the IRAF/DAOPHOT Package"
    [37] Lindsey Davis, 1987, "Speci cations for the Aperture Photometry Package"
    [38] Jin Lee, 1995, Thesis of Master Degree, Institute of Astronomy, National Central Uni-
    versity
    [39] Zhong-Yi Lin, 2002, Thesis of Master Degree, Institute of Astronomy, National Central
    University
    [40] P.B. Stetson, 1994, "Users Manual for DAOPHOT II", P.33
    [41] P.B. Stetson, 1990, CCDA, PROC, P. 289
    [42] Retter, A., Chou, Y., Bedding, T. R., Naylor, T., 2002, MNRAS, 330, L37
    [43] William H. Press et. al, "Numerical Recipes in C, The Art of Scienti c Computing, 2nd
    Edition", Chap 13-8
    [44] Lomb, N.R., 1976, Astrophysics and Space Sciences, 39, 447
    [45] Scargle, J.D., 1982, Astrophysical Journal, 302, 757
    [46] R.F. Stellingwerf, 1978, ApJ, 224, 953
    [47] Philip A. charles et. al, 1995, "Exploring the X-ray Universe", p.265
    [48] Dawn Marie Gelino, 2001, PHD Thesis, New Mexico State University
    [49] William H. Press et. al, "Numerical Recipes in C, The Art of Scienti c Computing, 2nd
    Edition", Chap 15-5
    [50] T. Shahbaz et. al, 1999, Astron.Astrophys., 346, 82
    [51] Wlater H.G. Lewin et. al, 1995, "X-ray Binaries", Chap 1
    Advisor
  • Yi Chou(P)
  • Files
  • 91229003.pdf
  • approve immediately
    Date of Submission 2004-10-14

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.