Title page for 90622018


[Back to Results | New Search]

Student Number 90622018
Author Yu-Ju Wang(王郁如)
Author's Email Address No Public.
Statistics This thesis had been viewed 2099 times. Download 344 times.
Department Graduate Institute of Geophysics
Year 2003
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Three dimensional S-wave attenuation model of the crust and uppermost mantle beneath arc-continent collision, Taiwan
Date of Defense 2003-06-04
Page Count 112
Keyword
  • attenuation
  • Qs
  • S wave
  • Taiwan
  • Abstract The S-wave attenuation structures (Qs) of Taiwan are imaged using the S-wave data from the dense deployed strong motion network of Taiwan. The image of 3-D Qs is essential in Taiwan because Qs is sensitivity to localized permeability and heterogeneity, which are important characters for interpreting active tectonic regions as Taiwan. The attenuation images of S-wave are obtained using t* values measured from S-wave spectra from Taiwan strong motion network for moderate size earthquakes (ML4.5-5.5) to avoid the source complexity. The time period used in this study is from 1993-1998. Over 2000 velocity spectra of S wave arrivals from 173 earthquakes were analyzed. A non-linear least square technique is applied to the spectra for t* by assuming a ?-2 model for the frequency band of 1-20Hz. A frequency-independent Qs was assumed in this study. Combined the existed three-dimensional S-wave velocity model, the three-dimensional Qs images were obtained.
    The Qs-tomography shows general consistent feature to geological structure. At shallow depth (4~9km), the Qs tomography separated the western Taiwan into high Qs and low Qs images to the north and south, respectively, along latitude of 23.5∘N. The low Qs image within southwestern Taiwan is related to its thicker sediment; while the high Qs image within northwestern Taiwan is related to the formation of foreland sequence. The image also reveals the variation across Longitudinal Valley, which is the suture zone of the arc-continent collision. At deeper depth, 27-38 km, a high Qs images extended from latitude of 24∘N to 25∘N, which is related to the subduting slab. A relative low Qs zone beneath the Central Range was found in the depths of 30-40 km. This low Qs zone is consistent with the low velocity zone obtained in Vp and Vs velocity images. The profile across the Chi-Chi hypocenter shows clear variation on Qs image across the ruptured Chelungpu fault. Our results show that the Qs images provide significant information for further understanding the tectonic structure of Taiwan.
    Table of Content                                頁碼
    論文提要 ………………………………………………………………..  i
    致謝 ……………………………………………………………………..  ii
    目錄 ……………………………………………………………………..  iii
    圖目 ……………………………………………………………………..  v
    表目 …………………………………………………………………….  vii
    第一章 緒論 ……………………………………………………………..  1
    1.1 研究動機與目的 ………………………………………………….  1
    1.2 台灣的地質背景與地體構造 …………………………………….  5
    1.3 文獻回顧 ………………………………………………………….  7
    1.4 本文內容 …………………………………………………………. 12
    第二章 研究方法 ……………………………………………………….. 13
    2.1 原理 ………………………………………………………………. 13
    2.2 非線性逆推(LSQENP) …………………………………………… 16
    2.3 區域性地震影像層析(L E T) …………………………………….. 18
    2.4 分布函數(spread function) ……………………………………….. 26
    第三章 資料處理和模型參數設定 …………………………………….. 27
    3.1 波形資料篩選 ……………………………………………………. 27
    3.2 模型與網格點設定 ………………………………………………. 34
    iii
    第四章 逆推結果與討論 ……………………………………………….. 41
    4.1 逆推結果測試與解析度分析 ……………………………………. 41
    4.2 三維衰減模型的展示與討論 ……………………………………. 41
    第五章 結論 …………………………………………………………….. 85
    附錄一 非線性逆推(LSQENP)的取樣方式 …………………………… 86
    附錄二 場址效應對Qs的影響 ………………………………………… 95
    附錄三 集集地震序列相關震源參數資料 …………………………….. 102
    參考文獻 ………………………………………………………………… 107
    英文摘要 ………………………………………………………………… 112
    iv
    圖  目
    頁碼
    圖 1.1.1   台灣和鄰近地區的板塊碰撞模式 ……………………….  2
    圖 1.1.2   1990~1997年規模4以上的台灣三維地震分布 ………..  3
    圖 1.1.3   台灣強地動觀測網測站分布圖 ………………………….  4
    圖 1.1.4   1992~1998年,ML4.5~5.5的地震波線涵蓋範圍圖 …...  6
    圖 1.2.1   台灣地質分區圖 ………………………………………….  8
    圖 1.2.2   台灣板塊構造及弧陸碰撞的立體示意圖 ……………….  9
    圖 2.1.1   觀測振幅頻譜公式(Scherbaum, 1990)示意圖 ………….. 14
    圖 2.3.1   區域性影像層析法(LET)概圖 …………………………... 20
    圖 2.3.2   三維模型中由兩點( , )擾動找出新點( )的示意
    圖 …………………………………………………………. 24
    圖 2.3.3   波徑曲率方向和速度梯度與波線垂直分量的幾何關係示
    意圖 ………………………………………………………. 25
    圖 3.1.1   波形資料分類圖例 ………………………………………. 28
    圖 3.1.2   波形處理流程圖 …………………………………………. 29
    圖 3.1.3   非線性逆推擬合結果圖例 ………………………………. 30
    圖 3.1.4   拐角頻率與觀測振幅頻譜理論曲線的關係示意圖 ……. 32
    圖 3.1.5   八個地震事件的拐角頻率統計分布 ……………………. 33
    圖 3.1.6   六個地震事件的t*分布圖 ………………………………. 35
    圖 3.1.7   本研究用於影像層析之173個地震、2178個t*的波線涵
    蓋圖 ………………………………………………………. 36
    圖 3.2.1   Rau and Wu(1995)的三維S波速度模型 ………………… 37
    v
    圖 3.2.2   衰減模型網格點設定示意圖 ……………………………. 40
    圖 4.1.1   採初始均值Qs模型所得的逆推結果 …………………... 42
    圖 4.1.2   採用均值Vs模型所得的逆推結果 ……………………... 43
    圖 4.1.3   採用陳燕玲(1995)的衰減模型及Rau and Wu (1995)Vs速
    度模型所得的逆推結果 ………………………………... 44
    圖 4.2.1   Qs深度剖面分布圖 …………………………………….. 47
    圖 4.2.2   台灣西部中生代基盤深度分布圖 ……………………... 55
    圖 4.2.3   Qs緯度剖面位置示意圖 ……………………………….. 58
    圖 4.2.4   Qs緯度剖面分布圖 …………………………………….. 59
    圖 4.2.5   劉和馬(1995)速度構造剖面圖 …………………………. 64
    圖 4.2.6   臺灣地區地熱流的分布圖 ……………………………… 66
    圖 4.2.7   集集地震序列與Qs構造關係圖 ……………………….. 68
    圖 4.2.8   Qs經度剖面位置示意圖 ………………………………... 71
    圖 4.2.9   Qs經度剖面分布圖 ……………………………………... 72
    圖 4.2.10  北緯24.0∘向北傾斜的班氏帶剖面圖 ………………… 80
    圖 4.2.11  Qs與地震分布關係圖 …………………………………... 82
    圖 4.2.12  台灣區域性Qs分布與深度關係圖 …………………….. 84
    附錄圖 1.1.1  非線性逆推(LSQENP)計算的取樣方式示意圖 ……. 87
    附錄圖 1.1.2  非線性逆推(LSQENP)計算三種取樣方式的逆推結果
    圖例 ………………………………………………….. 88
    附錄圖 2.1.1  各場址測站的拐角頻率分布統計 …………………... 96
    vi
    表  目
    頁碼
    表 3.2.1   陳燕玲(1995)東南部衰減模型 ………………………….. 38
    表 3.2.2   本研究初始Qs模型的設定 …………………………….. 38
    附錄表 1.1.1   非線性逆推(LSQENP)取樣方式評估統計 ………... 94
    附錄表 2.1.1   GEO場址分類(Lee et al.,1999) …………………….. 95
    附錄表 2.1.2   附錄圖2.1.1各場址測站拐角頻率之數值資料 …... 99
    附錄表 3.1.1   Kao and Chen (2000)所定出的集集地震序列震源參數
    資料 ………………………………………………….. 103
    vii
    Reference Aki, K. and Lee, W. H. K., Determination of the three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes,Ⅰ, A homogeneous initial model, J. Geophys. Res., 81, 4381-4399, 1976.
    Aki, K., Scaling law of seismic spectrum, J. Geophys. Res., 72, 1217-1231, 1967.
    Bowin, C., R. S. Lu, C. S. Lee and H. Schouten, Plate convergence and accretion in the Taiwan-Luzon region, Bull. Amer. Petrol. Geol., 62, 9, 1645-1672, 1978.
    Chen, K.-J., Y.-H. Yeh, and C.-T. Shyu, Qp Structure in the Taiwan Area and Its Correlation to Seismicity, TAO, 7, 4, 409-429, 1996.
    Chen, K.-J., S-wave Attenuation Structure in the Taiwan Area and Its Correlation to Seismicity, TAO, 9, 1, 97-118, 1998.
    Chen, C. H., Hot spring and geotherm heat in Taiwan, Ti-Chih, 9, 327-340 , 1989.
    Thurber C., D. Eberhart-Phillips, Local earthquake tomography with flexible gridding, Computer and Geosciences, 25, 809-818, 1999.
    Crosson, R. S., Crustal structure modeling of earthquake data 1. simultaneous least squares estimation of hypocenter and velocity parameters, J. Geophys. Res., 81, 3036-3046, 1976.
    Eberhart-Phillips D., M. Chadwick, Three-dimensional attenuation model of the shallow Hikurangi subduction zone in the Raukumara Peninsula, New Zealand, JGR, 107, B2, 3-1-3-15, 2002.
    Hashida, T., Three-dimensional seismic attenuation structure beneath the Japanese Islands and its tectonic and thermal implications, Teconophys., 159, 163-180, 1989.
    Iyer H. M. and K. Hirahara, Seismic Tomography Theory and Practice, 563-580, 1993.
    Ho-Liu, P., H. Kanamori and R. W. Clayton, Applications of attenuation tomography to Imperial Valley and Coso-Indian Wells region, Southern California, J. Geophys. Res., 93, 10501-10520, 1988.
    Hu, C. C. and Chen, W. S., Gravity and magnetic anomalies of eastern Taiwan, Mem. Geol. Soc. China, 7, 341-352, 1986.
    Kao H. and W. P. Chen, The Chi-Chi Earthquake Sequence: Active, Out-of-Sequence Thrust Faulting in Taiwan, Science, 288, 2346-2349, 2000.
    Lee, C. R., and Cheng, W. T., Preliminary heat flow measurements in Taiwan, paper presented at fourth Circum-Pacific Energy and Mineral Resources Conference, Singapore, 1986.
    Less, J. M., and G. T. Lindley, Three dimensional attenuation tomography at Loma Prieta: Inversion of t* for Q, J. Geophys. Res., 99, 6843-6863, 1994.
    Lin, A. T. and Watts A. B., Origin of the west Taiwan basin by orogenic loading and flexure of a rifted continental margin, J. Geophys. Res, 107, B9, 2158, 2002.
    Lin, C.H., Thermal modeling of continental subduction and exhumation in Taiwan, Tectonophysics, 324, 3, 189-201, 2000.
    Liu, T. K., Neotectonic crustal movement in northeastern Taiwan inferred by radiocarbon dating of terrace deposits, Proc. Geol. Soc. China, 33, 65-84, 1990.
    Ma, K.-F., A. T.-R. Song., S.-J. Lee and H.-I. Wu, Spatial Slip Distribution of the September 20, 1999, Chi-Chi, Taiwan, Earthquake (Mw7.6) –Inverted from Teleseismic Data, Geophysical Research Letters, 27, 20, 3417-3420, 2000.
    Ma, K.-F., J.-H. Wang and D. Zhao, Three-Dimensional Seismic Velocity Structure of the Crust and Uppermost Mantle beneath Taiwan, J. Phys. Earth, 44, 85-105, 1996.
    Rau, J.-R., F.-T. Wu, Tomographic imaging of lithospheric structures under Taiwan, Earth and Planetary Science Letters, 133, 517-532, 1995.
    Roecker, S.W., Yen, Y. H. and Tsai, Y. B., Three-dimensional P and S wave velocity structure beneath Taiwan: Deep structure of an arc-continent collision. J. Geophys. Res., 85, 1358-64, 1987.
    Rietbrock, A., and F. Scherbaum, The influence of the recording site on the combined inversion for source parameters and attenuation from Loma Prieta aftershocks, EOS, 75, 460, 1994.
    Rietbrock A., P-wave attenuation structure in the fault area of the 1995 Kobe earthquake, JGR, 106, 4141-4154, 2001.
    Scherbaum, F., Combined inversion for the three-dimensional Q structure and source parameters using microearthquake spectra, J. Geophys. Res., 95, 12, 423-12, 428, 1990.
    Scherbaum, F. and M. Wyss, Distribution of attenuation in the Kaoiki, Hawaii, Source volume estimated by inversion of P wave spectra, J. Geophys. Res., 95, 12.439-12.448, 1990.
    Suppe, J., Mechanics of mountain building and metamorphism in Taiwan, Mem. Geol. Soc. China, 4, 67-89, 1981.
    Thurber, C. H., Earthquake location and three-dimensional crustal structure in the Coyote Lake area, central California, J. Geophys. Res., 88, 8226-8236, 1983.
    Um, J. and Thurber C. H, A fast algorithm for two-point seismic ray tracing, Bull. Seism. Soc. Am., 77, 972-987, 1987.
    Wang, J. H., K. C. Chen and T. Q. Lee, Depth distribution of shallow earthquakes in Taiwan, J. Geol. Soc. China., 37, 125-142, 1994.
    Wang, C.-Y., Calculations of Qs and Qp using the spectral ratio method in the Taiwan area, proceedings of The Geological Society of China, 31, 1, 81-98, 1988.
    Yu, S. B. and H. Y. Chen, Global positioning system network for crustal deformation study in Taiwan, Bull. Inst. Earth Sci. Acad. Sin., 12, 52-55, 1992.
    Zhao, D., A tomographic study of seismic velocity structure in the Japan Island, Ph. D. Thesis, Tohoku University, 1990.
    鄭文彬(2000),臺灣地區三維震波衰減構造之探討。中央氣象局地震測報中心八十九年度研究報告地CW89-1A-16號,台北,共39頁。
    何春蓀(1997),台灣地質概論。台灣地質圖說明書,經濟部中央地質調查所,台北,18、144、145頁。
    何春蓀(1982),臺灣地體構造的演變,台灣地質圖說明書,經濟部中央地質調查所。
    畢慶昌(1972b),西臺灣斷層仍否衝動?國立臺灣大學地質系研究報告,第十五期,69~81頁。
    紀文榮、藍生傑、蘇強(1981),臺灣東部海岸山脈板塊互撞之地層紀錄,中國地質學會地質專刊,第四號,155~194頁。
    劉乃菁、馬國鳳(1995),由三維速度構造探討台灣地區隱沒帶特性,中央大學地球物理研究所,碩士論文。
    王乾盈、張建興、林祖尉(2000),集集大地震:薄皮逆衝理論之傑作?,八十九年中國地質年會論文集摘要,96-99頁。
    Advisor
  • Kuo-Fong Ma(馬國鳳)
  • Files
  • 90622018.pdf
  • approve immediately
    Date of Submission 2004-05-31

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.