Title page for 90521033


[Back to Results | New Search]

Student Number 90521033
Author Che-ming Wang(¤ý«h¶{)
Author's Email Address No Public.
Statistics This thesis had been viewed 2592 times. Download 1265 times.
Department Electrical Engineering
Year 2007
Semester 1
Degree Ph.D.
Type of Document Doctoral Dissertation
Language English
Title Linearity Improvement of InGaP/GaAs HBTs and Characterization of InP-based Type-I/II HBTs
Date of Defense 2007-09-28
Page Count 116
Keyword
  • collector
  • GaAs
  • HBT
  • InP
  • linearity
  • type-I
  • type-II
  • Abstract Heterojunction Bipolar Transistors (HBTs) proposed to improve the emitter efficiency by base-emitter (BE) heterojunction in 1958s. The GaAs-based and InP-based HBTs were implemented as the material growth techniques of MOCVD and MBE became mature in 1980s. In recent, the HBTs are widly applicated in the power amplifier of wireless communication system. The nonlinear characteristic of HBTs is an important point that affects power performance of circuit design. The four major sources of HBTs nonlinearity and the large-signal swing related nonlinear factors are discussed. InP-based HBTs achieved record high speed results and are currently the most promising technologies for achieving Terahertz (THz) operation. The energy band and relation material of the type-I and type-II of InP-based HBTs are studied. And the correlation between cutoff frequency (fT), maximum oscillation frequency (fMAX), collector thickness, breakdown voltage, collector current density is compared and analyzed.
    In the chapter 2, a non-uniform collector doping design is studied by employing a thin high-doping layer inside the low doping collector. The collector doping design limits collector depletion and electric field at the thin-high doping layer. The ratio of maximum to minimum values of CBC with uniform and non-uniform collector doping are 1.6 and 1.1. This collector design results in the re-distribution of the electric fields in the collector to delay the onset of Kirk effect and thus improve the current handling capability, fT, output power, and linearity characteristics.
    In the chapter 3, a non-uniform collector doping design of GaAs HBTs by employing a thin high-doping layer inside the low doping collector are fabricated and analyzed. The identical emitter and base epi-layer structures shows the similar results in dc characteristics except the negligible reduction in breakdown voltage. The fT of non-uniform collector increases 12 GHz compared to convention HBT (HBT-A) by delay onset of Kirk effect. The power performance and linearity characteristic show the improvement of 2.2 dB in saturation output power and 10 dB in OIP3 at frequency 1.8 GHz. The HBTs (HBT-B and HBT-C) with a thin high-doping layer in the collector demonstrate the improved cutoff frequency, linearity and output power characteristics compared with a conventional HBT.
    In the chapter 4, a submicrometer 0.6¡Ñ12 £gm2 InP/InGaAs DHBTs by E-bean lithography is fabricated and measured. The current gain is 28.4 at JC = 666 kA/cm and the common-emitter breakdown voltage exceeds 5 V. The fT and fMAX of the InP/InGaAs DHBT are 230 GHz and 135 GHz, respectively. The saturation output power of 14.3 dBm and the maximum output power density of 3.7 mW/µm2 are measured at Ka-band with load-pull system matching to maximize the output power. This is the highest output power density obtained with submicrometer DHBTs at 29 GHz every reported for on-wafer load-pull measurement using InP/InGaAs DHBT technology.
    Finally, in the chapter 5, the InAlAs-InP composite emitter could effectively reduce electron pile-up at the InP/GaAsSb base-emitter junction and improve current gain. The current gain (
    Table of Content ºK­ni
    Abstractiii
    »xÁÂv
    Table of contentsvi
    List of tablesviii
    List of figuresix
    Chapter 1 Introduction1
    1-1 Overview of GaAs and InP-based HBTs1
    1-2 Nonlinear characteristics of HBTs4
    1-3 Brief InP-based HBTs7
    1-4 Dissertation Organization11
    Chapter 2 Collector Design in GaAs HBT to improve linearity12
    2-1 Introduction12
    2-2 Device Structures and Simulation Parameters13
    2-3 Breakdown Characteristics of Non-uniform Collector16
    2-4. Base Collector Capacitance and Linearity18
    2-5. Kirk Effect and Output Power24
    Chapter 3 Characterization of InGaP/GaAs HBT by Non-uniform Collector Doping Design30
    3-1 Introduction30
    3-2 Device Fabrication30
    3-3 Dc and Ac characteristics33
    3-4 Base-Collector Capacitance Variation39
    3-5 Output Power Characteristics43
    3-6 Third-order Intermodulation Performance45
    3-7 Summary49
    Chapter 4 Ka-band Performance of InP/InGaAs/InP Type-I DHBTs50
    4-1 Introduction50
    4-2 Epitaxial Structure and Fabrication51
    4-3 DC and RF characteristics of InP/InGaAs DHBTs56
    4-4 Power Performance of InP/InCaAs DHBTs59
    Chapter 5 Characteristics of InAlAs-InP/GaAsSb/InP Type-II DHBTs63
    5-1 Introduction63
    5-2 Measured dc and Ac characteristics64
    5-2-2 DC and AC characteristic68
    5-3 Analysis of GaAsSb DHBTs with Different Emitter Material74
    5-4 Temperature dependent study of InAlAs-InP/GaAsSb/InP DHBT82
    5-5 Summary92
    Chapter 6 Conclusion and Future Work93
    6-1 Conclusion93
    6-2 Future Work95
    Reference96
    Appendix A103
    Appendix B108
    PUBLICTION LIST115
    Reference [1]K. Bardeen and W. H. Brattain, ¡§The transistor, a semiconductor triode,¡¨ Phys. Rev., vol. 71, pp. 230, 1948.
    [2]W. Shockley, ¡§The theory of p-n junction in semiconductor and p-n junction transistor¡¨, Bell syst. Tech. J. vol. 28, pp. 435, 1949.
    [3]H. Kroemer, ¡§Theory of a Wide-Gap Emitter for Transistors,¡¨ proc. IRE, vol. 45, pp.1535, 1957.
    [4]H. T. Yuan, W. V. McLevige, and H. D. Shih, ¡§ GaAs Bipolar Digital Integrated Circuit¡¨, in N. G. Einspruch and W. R. Wisseman (eds.), VLSI Electrics icrostructure Science, vol. 11, pp. 173-213, Academic Press, Orlando, 1985.
    [5]R. Nottenburg, J. C. Bischoff, M. B. Panish, and H. Temkin, ¡§High-speed InGaAs(P)/InP double-heterostructure bipolar transistors¡¨, IEEE Electron Device Lett., vol. 8, pp. 282-284, 1987
    [6]W. Snodgrass, W. Hafez, N. Harff, and M. Feng, "Pseudomorphic InP/InGaAs Heterojunction Bipolar Transistors (PHBTs) Experimentally Demonstrating fT = 765 GHz at 25¢XC Increasing to fT = 845 GHz at -55¢XC", IEEE Indium Phosphide and Related Materials, pp. 1-4, 2006.
    [7]F. Schwierz, and J. J. Liou, ¡§RF transistors: Recent developments and roadmap toward terahertz applications,¡¨ Solid-State Electronics, vol. 51, pp. 1079-1091, 2007.
    [8]Z. Griffith, E. Lind, M. J.W. Rodwell, X. M. Fangt, D. Loubychevt, Y. Wut, J. M. Fastenaut, and A. W.K. Liut, ¡§Sub-300 nm InGaAs/InP Type-I DHBTs with a 150 nm collector, 30 nm base demonstrating 755 GHz fmax and 416 GHz fT,¡¨ IEEE Indium Phosphide and Related Materials, pp. 403-406, 2007.
    [9]S. Reed, Y. Wang, F. Huin, and S. Toutain, ¡§HBT Power Amplifier With Dynamic Base Biasing for 3G Handset Applications,¡¨ IEEE Microw. Wireless Compon. Lett., vol. 14, pp. 380-382, Aug. 2004.
    [10]T. Iwai, K. Kobayashi, Y. Nakasha, T. Miyashita, S. Ohara, and K. Joshin, ¡§42% High-Efficiency Two-Stage HBT Power-Amplifier MMIC for W-CDMA Cellular Phone Systems¡¨, IEEE Trans. Microwave Theory and Tech., vol. 48, pp. 2567-2572, Dec. 2000.
    [11]J.H. Kim, J.H. Kim, Y.S. Noh, and C.S. Park, ¡§ A Low Quiescent Current 3.3 V operation Linear MMIC Power Amplifier for 5 GHz WLNA Application¡¨, IEEE Microwave Symp., pp. 867-870, 2003.
    [12]K. Nellis and P. J. Zampardi, ¡§A Comparison of Linear Handset Power Amplifiers in Different Bipolar Technologies,¡¨ IEEE J. Solid-State Circuits, vol. 39, pp.1746-1754, Oct. 2004.
    [13]S.M. SZE, ¡§High-Speed Semiconductor Devices¡¨, Wiley-Interscience, 1990.
    [14]D. Caffin, A.-M. Duchenois, F. Heliot, C. Besombes, J.-L. Benchimol, and P. Launay, ¡§Base-Collector Leakage Currents in InP/InGaAs Double Heterojunction Bipolar Transistorss¡¨, IEEE Trans. Electron Devices, vol. 44, pp. 930-936, June 1997.
    [15]S. Narayanan, ¡§Transistor distortion analyzed using Velterra series representation,¡¨ Bell syst. Tech. J., pp. 991-1024, May-June, 1967
    [16]S.A. Maas, B.L. Nelson, and D.L. Tait, ¡§Intermodulation in Heterojunction Bipolar Transistors¡¨, IEEE Trans. Microwave Theory and Tech., vol. 40, pp. 442-448, Mar. 1992.
    [17]A. Samelis and D. Pavlidis, ¡§Mechanisms determining third-order intermodulation distortion in AlGaAs/GaAs HBT¡¦s¡¨, IEEE Trans. Microwave Theory and Tech., vol. 40, pp. 2374-2380, Dec. 1992.
    [18]B. Li and S. Prasad, ¡§Intermodulation Analysis of the Collector-Up InGaAs/InAlAs/InP HBT Using Volterra Series¡¨, IEEE Trans. Microwave Theory and Tech., vol. 46, pp. 1321-1323, Sep. 1998.
    [19]W. Kim, S. Kang, K. Lee, M. Chung, J. Kang, and B. Kim, ¡§Analysis of Nonlinear Behavior of Power HBTs¡¨, IEEE Trans. Microwave Theory and Tech., vol. 50, pp. 1714-1722, July 2002.
    [20]Y.J. Jeon, H.W. Kim, M.S. Kim, Y.S.Kim, J.W. Kim, J.Y. Choi, D.C. Jung, and J.H. Shin, ¡§ Improved HBT Linearity With a ¡§Post-Distortion¡¨-Type Collector Linearizer¡¨, IEEE Microw. Wireless Compon. Lett., vol. 13, pp. 102-104, Mar. 2003.
    [21]David M. Pozar, ¡§Microwave Engineering¡¨, Wiley, 2005.
    [22]W. Hafez, W. Snodgrass, and M. Feng, ¡§12.5 nm base psedomorphic heterojunction bipolar transistor achieving fT=710GHz and fMAX=340 GHz,¡¨ Appl. Phys. Lett., 87, 2005.
    [23]M. Feng, W. Hafez, J. W. Lai, ¡§Over 500GHz InP Heterojunction Bipolar Transistors,¡¨ IEEE Indium Phosphide and Related Materials, pp. 653-658, 2004.
    [24]D. Yu, K. Choi, K. Lee, B. Kim, H. Zhu, K. Vargason, J. M. Kuo, and Y. C. Kao, ¡§ Realization of High -Speed InP SHBTs using Novel but Simple Techniques for Parasitic Reduction¡¨, IEEE Indium Phosphide and Related Materials, pp. 753-756, 2004.
    [25]W. Hafez, J. W. Lai, and M. Feng, ¡§InP/InGaAs SHBT with 75nm collector and fT >500GHz,¡¨ IEE Electronics Lett., vol.39, pp. 1475-1476, Oct. 2003.
    [26]W. Hafez, J. W. Lai, and M. Feng, ¡§Record fT + fMAX performance of InP/InGaAs single heterojunction bipolar transistors,¡¨ IEE Electronics Lett., vol.39, pp. 811-813, May 2003.
    [27]J. W. Lai,W. Hafez, Y. J. Chuang, D. Caruth, and M. Feng, " Submicron scaling InP/InGaAs single heterojunction bipolar transistor technology with fT >400GHz for 100GHz applications," IEEE Gallium Arsenide Integrated Circuit Symp., pp. 215-218, 2003.
    [28]J. W. Lai,W. Hafez, and M. Feng, " Vertical Scaling of type I InP HBT with fT >500GHz," International Journal of High Speed Electronics and Systems, vol. 14, , pp. 625-631, 2004.
    [29]D. Yu, K. Choi, K. Lee, B. Kim, H. Zhu, K. Vargason, J. M. Kuo, and Y. C. Kao, " Ultra High-Speed 0.25um Emitter InP-InGaAs SHBT with fMAX of 687 GHz,¡¨ IEEE Int.Electron Devices Meet., pp. 557-560, 2004.
    [30]K. Lee, D. Yu, M. Chung, J. Kang, and B. Kim, "New Collector Undercut Technique Using a SiN Sidewall for Low Base Contact Resistance in InP/InGaAs SHBTs," IEEE Trans. Electron Devices, vol. 44, pp. 1079 -1082, June 2002.
    [31]D. Yu; K. Lee; B. Kim; D. Ontiveros, K. Vargason, J.M. Kuo, and Y.C. Kao, ¡§Ultra high-speed InP-InGaAs SHBTs with fMAX of 478 GHz,¡¨ IEEE Trans. Electron Devices, vol. 24, pp. 384-386, June, 2003.
    [32]W. Hafez, J.W. Lai, and M. Feng, "Low-Power High-Speed Operation of Submicron InP¡VInGaAs SHBTs at 1 mA," IEEE Electron Device Lett., vol. 24, pp. 427-429, July 2003.
    [33]M. Ida, K. Kurishima, and N. Watanabe, "Over 300 GHz fT and fMAX InP/InGaAs Double Heterojunction Bipolar Transistors With a Thin Pseudomorphic Base", IEEE Electron Device Lett., vol. 23, pp. 694-696, Dec. 2002.
    [34]T.Hussain, Y. Royter, D. Hitko, M. Montes, M. Madhav, I. Milosavljevic, R. Rajavel, S. Thomas, M. Antcliffe, A. Arthur, Y. Boegeman, M. Sokolich, J. Li, P. Asbeck, "First demonstration of 0.25£gm-width emitter InP-DHBTs with > 400 GHz fT and > 400 GHz fMAX," IEEE Int.Electron Devices Meet., pp. 553-556, 2004.
    [35]Z. Griffith, M. Rodwell, M. Dahlstrom, X.M. Fang, D. Lubyshev, Y. Wu, J.M. Fastenau, W.K. Liu, "In0.53Ga0.47As/InP Type-I DHBTs w/ 100 nm Collector and 491 GHz fT , 415 GHz fMAX," IEEE Indium Phosphide and Related Materials, pp. 343-346, 2005.
    [36]K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, "Fabrication and characterization of high-performance InP/InGaAs double-heterojunction bipolar transistors", IEEE Trans. Electron Devices, vol. 41, pp. 1319-1326, Aug. 1994.
    [37]M. Dahlstrom, X.-M. Fang, D. Lubyshev, M. Urteaga, S. Krishnan, N. Parthasarathy, Y.M. Kim, Y. Wu, J.M. Fastenau, W.K. Liu, M.J.W. Rodwell, ¡§Wideband DHBTs using a graded carbon-doped InGaAs base,¡¨ IEEE Electron Device Lett., vol. 24, pp. 433-435, July 2003.
    [38]M. Kahn, S. Blayac, M. Riet, P. Berdaguer, V. Dhalluin, F. Alexandre, F. Aniel, and J. Godin, "Effect of base thickness reduction on high speed characteristics and base resistance of InGaAs/InP heterojunction bipolar transistor," IEEE Indium Phosphide and Related Materials, pp. 134-137, 2003.
    [39]J.C. Li, M. Chen, D.A. Hitko, C.H. Fields, S. Binqiang, R. Rajavel, P.M. Asbeck, M. Sokolich, "A submicrometer 252 GHz fT and 283 GHz fMAX InP DHBT with reduced CBC using selectively implanted buried subcollector (SIBS)," , IEEE Electron Device Lett., vol. 26, pp. 136-138, Mar. 2005. 
    [40]Z. Griffith,M. Dahlstrom, M.J.W. Rodwell, X.-M. Fang, D. Lubyshev, Y. Wu, J.M. Fastenau, and W.K. Liu, "InGaAs-InP DHBTs for increased digital IC bandwidth having a 391-GHz fT and 505-GHz fMAX," IEEE Electron Device Lett., vol. 26, pp. 11-13, Jan. 2005.
    [41]D. Sawdai, K. Yang, S.-H.Hsu, D.Pavlidis, and G.I. Haddad, " Power performance of InP-Base Single and Double Heterojunction Bipolar Transistors", IEEE Trans. Microwave Theory and Tech., vol. 47, pp. 1449-1456, Aug. 1999.
    [42]A. Fujihara, Y. Ikenaga, H. Takahashi, M. Kawanaka, and S. Tanaka, ¡§High-speed InP/InGaAs DHBTs with ballistic collector launcher structure,¡¨ IEEE Int. Electron Devices Meet., pp. 35.3.1¡V35.3.4., 2001.
    [43]M. Ida, K. Kurishima, N. Watanabe, and T. Enoki, ¡§InP/InGaAs DHBTs with 341-GHz fT at high current density of over 800 kA/cm2,¡¨ IEEE Int. Electron Devices Meet., pp. 35.4.1-35.4.4, 2001.
    [44]M. Kahn, S. Blayac, M. Riet, P. Berdaguer, V. Dhalluin, F. Alexandre,and J. Godin, ¡§Measurement of base and collector transit times in thinbaseInGaAs/InP HBT,¡¨ IEEE Electron Device Lett., vol. 24, pp.430-432, May 2003.
    [45]B.-R. Wu, W. Snodgrass, M. Feng and K.Y. Cheng, "High-speed InGaAsSb/InP double heterojunction bipolar transistor with composition graded base and InAs emitter contact layers ", Crystal Growth J., vol. 301-302, pp. 1005-1008, April 2007.
    [46]Zach Griffith and Mark J.W. Rodwell, Xiao-Ming Fang, Dmitri Loubychev, Ying Wu, Joel M. Fastenau, and Amy W.K. Liu, "InGaAs/InP DHBTs with a 75nm Collector, 20nm base Demonstrating 544 GHz fT, BVCEO = 3.2V, and BVCBO = 3.4V,¡¨ IEEE Indium Phosphide and Related Materials, pp. 96-99, 2006.
    [47]Yi, S.S.; Chung, S.J.; Rohdin, H.; Bour, M.H.D.; Moll, N.; Chamberlin, D.R.; Amano, J.; "Growth and device performance of InP/GaAsSb HBTs" IEEE Indium Phosphide and Related Materials,pp.380-384, 2003.
    [48]M.W. Dvorak, N. Matine, S.P. Watkins, and C.R. Bolognesi, "MOCVD-grown 175 GHz InP-GaAsxSb1-x-InP DHBTs with high current gains using strained and heavily C-doped base layers", IEEE Device Research Conference, pp.143-144, 2000.
    [49]X. Zhu, D. Pavlidis, and G. Zhao, ¡§First Power Demonstration of InP/GaAsSb/InP Double HBTs,¡¨ IEEE Indium Phosphide and Related Materials, pp. 757-760, 2004.
    [50]W. Snodgrass, B.-R. Wu, W. Hafez, K.-Y. Cheng, and M. Feng, ¡§Graded Base Type-II InP/GaAsSb DHBT With fT = 475 GHz,¡¨ IEEE Electron Device Lett., vol. 27, pp.84¡V86, Feb. 2006.
    [51]H. G. Liu, S. P.Watkins, and C. R. Bolognesi, ¡§15-nm Base Type-II InP/GaAsSb/InP DHBTs With fT = 384 GHz and a 6V BVCEO,¡¨ IEEE Trans. Electron Devices, vol. 53, pp. 559-561, Mar. 2006.
    [52]B.F. Chu-Kung, and M. Feng, "InP/GaAsSb type-II DHBTs with fT >350 GHz," IEE Electronics Lett., vol. 40, pp. 1305, 2004.
    [53]M.W. Dvorak, C.R. Bolognesi, O.J. Pitts, and S.P. Watkins, ¡§300 GHz InP/GaAsSb/InP double HBTs with high current capability and BVCEO>6 V¡¨ IEEE Electron Device Lett., vol. 22, pp. 361-363, Apr. 2001.
    [54]H. G. Liu, N. Tao, S. P. Watkins, and C. R. Bolognesi, ¡§Extraction of the average collector velocity in high-speed ¡§Type-II¡¨ InP-GaAsSb-InP DHBTs,¡¨ IEEE Electron Device Lett., vol. 25, pp. 769-771, Sep. 2004.
    [55]M. W. Dvorak, ¡§Design, fabrication and characterization of ultra highspeed InP/GaAsSb/InP double heterojunction bipolar transistors,¡¨ Ph.D.dissertation, Simon Fraser University, Burnaby, Canada, 2001.
    [56]Bing-Ruey Wu, William Snodgrass, Milton Feng, K.Y. Cheng, "High-speed InGaAsSb/InP double heterojunction bipolar transistor with composition graded base and InAs emitter contact layers", J. Crystal Growth, vol. 301-302, pp. 1005-1008, 2007.
    [57]R. Krithivasan, Y. Lu, J.D. Cressler, J.-S. Rieh, M.H. Khater, D. Ahlgren, and Greg Freeman, "Half-Terahertz Operation of SiGe HBTs", IEEE Electron Device Lett., vol. 27, pp. 567-569, July. 2006.
    [58]A.J. Joseph, D.L. Harame, B. Jagannathan, D. Coolbaugh, D. Ahlgren, J. Magerlein, L. Lanzerotti, N. Feilchenfeld, S. St Onge, J. Dunn, and E. Nowak, "Status and direction of communication technologies - SiGe BiCMOS and RFCMOS", IEEE Proceedings, vol. 93, pp. 1539-1558, Sep. 2005.
    [59]C. R. Bolognesi, N. Matine, M. W. Dvorak, P. Yeo, X. G. Xu, and S. P. Watkins, ¡§InP/GaAsSb/InP Double HBTs: A New Alternative for InP-Based DHBTs¡¨, IEEE Trans. Electron Devices, vol. 48, pp. 2631-2639, Nov. 2001.
    [60]F.H. Raab, P. Asbeck, S. Cripps, P.B. Kenington, Z.B. Popovic, N. Pothecary, J.F. Sevic, N.O. Sokal, ¡§Power amplifiers and transmitters for RF and microwave,¡¨ IEEE Trans. Microwave Theory Tech., vol. 50, pp. 814-826, Mar. 2002.
    [61]T. Iwai, K, p. Kobayashi, Y. Nakasha, T. Miyashita, S. Ohara, and K. Joshin, ¡§ 42% High-Efficiency Two-Stage HBT Power-Amplifier MMIC for W-CDMA Cellular Phone Systems,¡¨ IEEE Trans. Microwave Theory Tech., vol. 48, pp. 2567-2573, Dec. 2000.
    [62]P. F. Chen, Y. M. T. Hsin, R. J. Welty, P. M. Asbeck, R. L. Pierson, P. J. Zampardi, W.-J. Ho, M. C. V. Ho, and M. F. Chang, ¡§Application of GaInP/GaAs DHBT¡¦s to Power Amplifiers for Wireless Communications,¡¨ IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1433-1438, Aug. 1999.
    [63]Y. Yang; K. Choi, K.P.Weller, ¡§DC Boosting Effect of Active Bias Circuits and Its Optimization for Class-AB InGaP¡VGaAs HBT Power Amplifiers,¡¨ IEEE Trans. Microwave Theory Tech., vol. 52, pp. 1455-1463, May 2004.
    [64]T. B. Nishimura, M. Tanomura, K. Azuma, K. Nakai, Y. Hasegawa, H. Shimawaki, ¡§A 50% Efficiency InGaP/GaAs HBT Power Amplifier Module for 1.95 GHz Wide-Band CDMA Handsets,¡¨ IEEE Radio Freq. Integr. Circuits Symp., Phoenix, AZ, pp.31-34., May 2001.
    [65]N. L. Wang, N. H. Sheng, M. -C. F. Chang, W. J. Ho, G. J. Sullivan, E. A. Sovero, J. A. Higgins, and P. M. Asbeck ¡§Ultrahigh power efficiency operation of common-emitter and common-base HBT's at 10 GHz,¡¨ IEEE Trans. Microwave Theory Tech., vol. 38, pp. 1381-1390, Oct. 1990.
    [66]T. Niwa, T.Ishigaki, H. shimawaki, and Y. Nashimoto, ¡§A Composite-Collector InGaP/GaAs HBT with Ruggedness for GSM Power Amplifiers,¡¨ IEEE Microwave Symp., Philadelphia, PA, pp. 711-714, Jun. 2003.
    [67]M. Iwamoto, C. P. Hutchinson, J. B. Scott, T. S. Low, M. Vaidyanathan, P. M. Asbeck, and D. C. D¡¦Avanzo, ¡§Optimum Bias Conditions for Linear Broad-Band InGaP/GaAs HBT Power Amplifiers,¡¨ IEEE Trans. Microwave Theory Tech., vol. 50, pp.2954-2962, Dec. 2002.
    [68]W. D. van Noort, L. C. N. de Vreede, H. F. F. Jos, L. K. Nanver, and J. W. Slotboom, ¡§Reduction of UHF Power Transistor Distortion with a Nonuniform Collector Doping Profile,¡¨ IEEE J. solid-state circuits, vol. 36, pp. 1399-1406, Sep. 2001.
    [69]C. T. Kirk, ¡§A Theory of Transistor Cutoff Frequency (fT) Falloff at High Current Densities,¡¨ IRE Trans. Electron Devices, vol. 9, pp.164-174, Mar. 1962.
    [70]P.J. Zampardi and D.-S. Pan, ¡§Delay of Kirk Effect Due to Collector Current Spreading in Heterojunction Bipolar Transistors¡¨, IEEE Electron Device Lett., vol. 17, pp.470-472, Oct. 1996.
    [71]N. Hayama and K. Honjo, ¡§ Emitter Size Effect on Current Gain in Fully Self-aligned AlGaAs/GaAs HBT¡¦s with AlGaAs surface Passivation Layer,¡¨ IEEE Electron Device Lett., vol. 11, pp. 388-390, Sep. 1990.
    [72]M. Iwamoto, P. M. Asbeck, T. S. Low, C. P. Hutchinson, J. B. Scott, A. Cognata, X. Qin, L. H. Camnitz, and D. C. D'Avanzo, ¡§Linearity Characteristics of GaAs HBTs and the Influence of Collector Design, ¡§ IEEE Trans. Microwave Theory Tech., vol. 48, pp. 2377-2388, Dec. 2000.
    [73]D. R. Pehlke and D. Pavlidis, ¡§Evaluation of the Factors Determining HBT High-Frequency Performance by Direct Analysis of S-Parameter Data,¡¨ IEEE Trans. Microwave Theory Tech., vol. 40, pp. 2367-2373, Dec.1992.
    [74]S. Heckmann, J. M. Nebus, R. Quere, J. C. Jacquet, D. Floriot, and P. Auxemery, ¡§Measurement and Modeling of Static and Dynamic Breakdowns of Power GaInP/GaAs HBTs,¡¨ IEEE Microwave Symp., vol. 2, pp. 1001-1004, 2002.
    [75]K. W. Kobayashi, J. C. Cowles, L. T. Tran, A. G. Aitken, M. Nishimoto, J. H. Elliott, T. R. Block, A. K. Oki, and D. C. Streit, ¡§A 44 GHz High IP3 InP HBT MMIC Amplifier for Low DC Power Millimeter-Wave Receiver Applications¡¨, IEEE J. Solid-State Circuits, vol. 34, pp. 1188-1195, 1999.
    [76]S. Tanaka, S. Yamanouchi, Y. Amamiya, T. Niwa, K. Hosoya,; H. Shimawaki, K. Honjo, ¡§A Ka-band HBT MMIC power amplifier¡¨, IEEE Microwave Symp., pp. 553-557, 2000.
    [77]Y. L. Tang, N. Wadefalk, M. A. Morgan, S. Weinreb, ¡§Full Ka-band High Performance InP MMIC LNA Module¡¨, IEEE Microwave Symp., pp. 81-84, 2006.
    [78]R. S. Virk, M. Y. Chen, C. Nguyen, T. Liu, M. Matloubian, and D. B. Rensch, ¡§A High-Performance AlInAs/InGaAs/InP DHBT K-Band Power Cell¡¨, IEEE Microw. Wireless Compon. Lett., vol. 7, pp.323-325, Oct. 1997.
    [79]S. Krishnan, M. Dahlstrom, T. Mathew, Y. Wei, D. Scott, M. Urteaga, and M. Rodwell InP/InGaAs/InP double heterojunction bipolar transistors with 300 GHz fmax. IEEE Indium Phosphide Relat Materia, pp. 31-34, 2001.
    [80]H. F. Chau, D. Pavlidis, J. Hu, and K. Tomizawa, ¡§Breakdown-speed considerations in InP/InGaAs single- and double-heterojunction bipolar transistors¡¨, IEEE Trans. Electron Devices, vol. 40, pp. 2-8, Jan. 1993.
    [81]S. Lee, ¡§Effects of Pad and Interconnection Parasitics on Forward Transit Time in HBT¡¦s¡¨, IEEE Trans. Electron Devices, vol. 46, pp. 275-280, Feb. 1999.
    [82]D. Costa, W.U. Liu, and J.S. Harris, ¡§Direct Extraction of the AlGaAs/GaAs Heterojunction Bipolar Transistor Small-Signal Equivalent Circuit¡¨, IEEE Trans. Electron Devices, vol. 38, pp. 2018-2024, Sep. 1991.
    [83]M. Hafizi, P.A. Macdonald, T. Liu, D. B. Rensch, and T. C. Cisco, ¡§Microwave power performance of InP-based double heterojunction bipolar transistors for C- and X-band applications¡¨, IEEE Microwave Symp., pp.671-674, 1994.
    [84]C. Nguyen; T. Liu; M. Chen, H.C. Sun, and D. Rensch, ¡§AlInAs/GaInAs/InP double heterojunction bipolar transistor with a novel base-collector design for power applications¡¨, IEEE Electron Device Lett., vol. 17, pp. 133-135, Mar. 1996.
    [85]H.-F. Chau, H.-Q. Tserng, and E. A. Beam, ¡§Ka-band power performance of InP/InGaAs/InP double heterojunction bipolar transistors¡¨, IEEE Microwave and Guided Wave Lett., vol. 6, pp. 129-131, Mar. 1996.
    [86]Zhi Jin, W. Prost, S. Neumann, and F. J. Tegude, ¡§Current transport mechanisms and their effects on the performances of InP-based double heterojunction bipolar transistors with different base structures¡¨, Appl. Phys. Lett., vol. 84, pp. 15, Apr. 2004.
    [87]C. R. Bolognesi, N. Matine, M. W. Dvorak, X. G. Xu, J. Hu, and S. P. Watkins, ¡§Non-Blocking Collector InP/GaAs0.51Sb0.49/InP Double Heterojunction Bipolar Transistors with a Staggered Lineup Base¡VCollector Junction¡¨, IEEE Electron Device Lett., vol. 20, pp. 155-157, Apr. 1999.
    [88]C. R. Bolognesi, M.W. Dvorak, and S.P. Watkins, ¡§ Type-II Base-Collector Performance Advantage and Limitation in High-Speed NpN Double Heterojunction Bipolar Transistor (DHBTs)¡¨, IEICE Trans. Electron, vol. E86-C, pp. 1929-1934, Oct. 2003.
    [89]N. Matine, M.W. Dvorak, C.R. Bolognesi, X. Xu, J. Hu, S.P. Watkins and M.L.W. Thewalt, ¡§Nearly ideal InP/GaAsSb/lnP double heterojunction bipolar transistors with ballistically launched collector electrons¡¨, IEE Electronics Lett., vol. 34, pp. 1700-1701, Aug. 1998.
    [90]H. G. Liu, N. Tao, S. P. Watkins, and C. R. Bolognesi, ¡§Extraction of the Average Collector Velocity in High-Speed ¡§Type-II¡¨ InP¡VGaAsSb¡VInP DHBTs ,¡¨ IEEE Electron Devices Lett., vol. 25, pp.769-771, Dec. 2004.
    [91]J. Hu, X. G. Xu, J. A. H. Stotz, S. P. Watkins, A. E. Curzon, M. L. W. Thewalt, N. Matine, and C. R. Bolognesi, ¡§Type II photoluminescence and conduction band offsets of GaAsSb/InGaAs and GaAsSb/InP heterostructures grown by metalorganic vapor phase epitaxy¡¨, Appl. Phys. Lett., vol. 73, pp. 19, Nov. 1998.
    [92]Y. Oda, H. Yokoyama, K. Kurishima, T. Kobayashi, ¡§Improvement of current gain of C-doped GaAsSb-base heterojunction bipolar transistors by using an InAlP emitter,¡¨ Appl. Phys. Lett., vol. 87, pp. 023503, July 2005.
    [93]S.W. Cho, J.H. Yun, D.H. Jun, J.I. Song, I. Adesida, N. Pan, J.H. Jang, ¡§High performance InP/InAlAs/GaAsSb/InP double heterojunction,¡¨ Solid-State Electronics, vol. 50, pp. 902-907, June 2006.
    [94]Y. Oda, K. Kurishima, N. Watanabe, M. Uchida, T. Kobayashi, ¡§High-current-gain InAlP/AlGaAsSb/InP HBTs with a compositionally-graded AlGaAsSb base grown by MOCVD,¡¨ IEEE Indium Phosphide Relat Materia, New Jersey, USA, pp. 92-95, May 2006.
    [95]H. J. Zhu, J. M. Kuo, P. Pinsukanjana, X. J. Jin, K. Vargason, M. Herrera, ¡§GaAsSb-BASED HBTS GROWN BY PRODUCTION MBE SYSTEM,¡¨ IEEE Indium Phosphide Relat Materia, Kagoshima Japan, pp. 338-341, June 2004.
    [96]Che-ming Wang, Yue-Ming Hsin, Haijun Zhu, J. M. Kuo, and Y. C. Kao, ¡§Temperature dependent study of InAlAs-InP/GaAsSb/InP double heterojunction bipolar transistors,¡¨ Applied Physics Letters, vol. 90, 232102, June 2007.
    [97]S.S. Yi, D.R. Chamberlin, G. Girolami, M. Juanitas, D. Bour, N. Moll, and R. Moon, ¡§Growth and properties of GaAsSb/InP and GaAsSb/InAlAs superlattices on InP,¡¨ Journal of Crystal Growth, vol. 248, pp. 284-288, 2003.
    [98]Z. Abid, S.P.McAlister, W.R. McKinnon, and E.E. Guzzo, ¡§Temperature Dependent DC Characteristics of an InP/InGaAs/InGaAsP HBT¡¨, IEEE Electronics Lett., vol. 15, pp. 178-180, May 1994.
    [99]H. Yang, H. Wang, G.I. Ng, H. Zheng, and K. Radhakrishnan, „ DC Characterization of Metamorphic InP/InGaAs Heterojunction Bipolar Transistors at Elevated Temperature¡¨, Jan. J. Apply Phys., vol. 41, pp. 1136-1138, 2002.
    [100]H.J. Pan, W.C. Wang, K.B. Thei, C.C. Cheng, K.H. Yu, K.W. Lin, C.Z. Wu, and W.C. Liu, ¡§Investigation of temperature-dependent performances of InP In0.53Ga0.34Al0.13As heterojunction bipolar transistors¡¨, Semicond. Sci. Technol., vol. 15, pp. 1101-1106, 2000.
    [101]J. Kruse, P. J. Mares, D. Schemer, M. Feng, and G. E. Stillman, ¡§Temperature dependent study of carbon-doped InP InGaAs HBT's¡¨, IEEE Electronics Lett., vol. 17,pp. 10-12, Jan. 1996.
    [102]H. Wang, and G.I. Ng, ¡§Electrical Properties and Transport Mechanisms of InP/InGaAs HBTs Operated at Low Temperature¡¨, IEEE Trans. Electron Devices, vol. 48, pp. 1492-1497, Sep. 2001.
    Advisor
  • Yue-ming Hsin(¨¯¸Î©ú)
  • Files
  • 90521033.pdf
  • approve immediately
    Date of Submission 2007-10-04

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.