Title page for 90521007


[Back to Results | New Search]

Student Number 90521007
Author Zen-Wei Tseng(曾仁煒)
Author's Email Address s0521007@cc.ncu.edu.tw
Statistics This thesis had been viewed 2949 times. Download 3630 times.
Department Electrical Engineering
Year 2002
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Design of sensorless direct torque control for induction motor drives
Date of Defense 2003-06-23
Page Count 127
Keyword
  • Direct Torque Control
  • Fuzzy Estimator
  • Sensorless
  • Vector Control
  • Abstract Induction motors have been widely used in industry applications. According to its mechanical structure identities, the induction motor has a lot of advantages such as stable structure, low price, simplicity of maintenance and so on. Recently, vector control technique has been well developed, especially the direct torque control (DTC) algorithm. It has been shown that vector controlled induction motors have the properties as DC motors.
    Most high performance induction motor driver systems used the speed sensor to detect the feedback signal (rotor speed). However, using encoder would decrease the competitive advantage of induction motor and reduce the reliability of the system. To avoid using speed sensor, this thesis, firstly estimates the synchronous speed and slip speed from motor terminal voltages and currents. The difference of these two signals equals rotor speed, which is fed back to the speed control loop in the sensorless DTC speed control system.
    Experiment results show that this kind of sensorless direct torque control could not drive the system when loading. To solve this problem, a fuzzy slip-speed estimator is proposed. It is shown that the new estimator can estimate motor speed correctly and induce the torque effectively even in loading condition. Moreover, the accuracy of stator flux is critical to sensorless DTC system. To accurately estimate stator flux in low speed range, a new method is used to estimate stator flux, which effectively improves the performance of sensorless system at low speed range.
    The performance of the sensoless control system is investigated and verified experimentally.
    Table of Content 中文摘要……………………………………………………Ⅰ
    英文摘要……………………………………………………Ⅱ
    目錄…………………………………………………………Ⅲ
    圖目錄………………………………………………………Ⅴ
    表目錄………………………………………………………Ⅸ
    符號列表…………………………………………………Ⅹ
    第一章 緒論
    1.1研究動機與目的…………………………………………………………………1
    1.2研究背景…….………………………………………………………………...2
    1.3內容大綱…….………………………………………………………………...4
    第二章 感應馬達之動態模型與系統描述
    2.1 三相感應馬達旋轉原理……………………………………………………….7
    2.2 感應馬達之動態數學模型………….………………………………………..8
    2.2.1 感應馬達動態數學模型推導……………………………………………….9
    2.2.2 座標軸轉換………………………………………..……………………..13
    2.3 感應馬達轉矩與磁通命令………………………..……..…………………17
    2.4 空間向量調變技術…………………………………………………………..18
    2.5 全數位化驅動器架構概述……………………………………………………22
    第三章 直接轉矩之速度控制
    3.1 直接轉矩速度控制…………………………………………………………..25
    3.2 磁通與轉矩之控制…………………………………………..………………28
    3.2.1 磁通之控制……………………….……………………………………...29
    3.2.2 轉矩之控制………………………….…………………………………...30
    3.3 切換向量表之選擇……………………………………………………………31
    3.4 模擬與實驗……………………………………………………………………33
    3.5 結論與討論…………………………………………………………………..45
    第四章 無速度感測器之直接轉矩控制系統設計
    4.1 無速度感測之設計方式……………………………………………………..47
    4.1.1 同步旋轉速度估測方式………………………………………………....49
    4.1.2 滑差轉速估測方式………………………………………………………..52
    4.2 無速度感測之直接轉矩控制系統設計…………………………….……...55
    4.3 軟體設計流程…………………………………………………………………56
    4.4模擬與實驗…………………………………………………………………….58
    4.5結論與討論…………………………………………………………………….72
    第五章 新型無速度感測器之直接轉矩控制系統設計
    5.1 模糊滑差轉速估測器………………………………………………………..74
    5.1.1 模糊滑差轉速估測器設計…………………………………………………75
    5.2 磁通估算之改善……………………………………………………………..81
    5.3新型無速度感測器之直接轉矩控制系統……...…………………………..84
    5.4模擬與實驗……………………………………………………………….……86
    5.5結論與討論……………………………………………………………………101
    第六章 結論與建議……………………………………………………………..102
    附錄A …………………………………………………………………………….104
    參考文獻……………………………………………………………………………….XII
    作者簡歷……………………………………………….……………………………….XX 
    Reference [1]ABB Corporation Power Electronics System Products, http://www.abb.com/.
    [2]I. Takahashi and Y. Ohmori, “High-performance direct torque control of an induction motor” IEEE Trans. Industry Applications, vol.25, no.2, pp.257-264, Mar./Apr. 1989.
    [3]T. G. Haberler and D. M. Divan,“Control strategies for direct torque control using discrete pulse modulation”IEEE Trans. Industry Applications, vol. 27, no. 5, pp.893-901, Sept./Oct. 1991.
    [4]D. Casadei, G. Grandi, G. Serra, and A. Tani,“Effects of flux and torque hysteresis band amplitude in direct torque control of induction machines”IECON ‘94 20th International Conference on Industrial Electronics, Control and Instrumentation, vol.1, pp. 299-304, 1994.
    [5]G. Buja and D. Casadei,“DTC-based strategies for induction motor drives”IECON ‘97 23rd International Conference on Industrial Electronics, Control and Instrumentation, vol. 4, pp. 1506-1516, 1997.
    [6]M. P. Kazmierkowski and A. B. Kasprowicz,“Improved direct torque and flux vector control of PWM inverter-fed induction motor drives”IEEE Trans. Industry Electronics, vol. 42,no.4, pp.344-349, Aug. 1995.
    [7]H. Y. Zhong, H. P. Messinger, and M. Rashad,“A new micro-computer based direct torque control system for three phase induction motor”IEEE Trans. Industry Applications, vol.27, no.2, pp. 294-298, Mar./Apr. 1991.
    [8]C. Attaianese, A. Perfetto, A. Damiano, and I. Marongiu,“A direct torque control algorithm imposing the mechanical response of speed controlled induction motor drives,”ISIE‘96, Proceedings of the IEEE International Symposium on Industrial Electronics, vol.1, pp.157-162, 1996.
    [9]T. G. Habetler, F. Profumo, M. Pastorelli, and L. M. Tolbert,“Direct torque control of induction machines using space vector modulation”IEEE Trans. Industry Applications, vol.28, no.5, pp.1045–1053, Sept./Oct. 1992.
    [10] A. Purcell and P. Acarnley,“Multilevel hysteresis comparator forms for direct torque control schemes”Electronics Letters, vol.34, no.6, pp.601–603, Mar. 1998.
    [11] D. Casadei, G. Serra, and K. Tani,“Implementation of a direct control algorithm for induction motors based on discrete space vector modulation” IEEE Trans. Power Electronics, vol.15, no.4, pp.769-777, July. 2000.
    [12] C. Attaianese, V. Nardt, A. Perfetto, and G. Tomasso, “Vectorial Torque control: A novel approach to torque and flux control of induction motor drives”IEEE Trans. Industry Applications, vol.35, no.6, pp.1399-1405, Nov./Dec. 1999.
    [13] E. K. Sng, A. C. Liew, and T. A. Lipo,“New Observer- Based DFO scheme for speed sensorless Field-Oriented drives for Low-Zero-Speed operation”IEEE Trans. Power Electronics, vol.13, no.5, pp.959-968, Sept. 1998.
    [14] M. S. Nait Said and M. E. H. Benbouzid,“Induction motors direct field oriented control with robust On-Line tuning of rotor resistance”IEEE Trans. Energy Conversion, vol.14, no.4, pp.1038-1042, Dec. 1999.
    [15] A. Consoli, G. Scarcella and A. Testa,“A new Zero-Frequency Flux-Position Detection approach for Direct-Field-Oriented- Control drive”IEEE Trans. Industry Applications, vol.36, pp.797-804, no.3, May./June. 2000.
    [16] P. Vas, Vector Control of AC Machines, Clarendon Press Oxford, 1990.
    [17] D. W. Novotny, T. A. Lipo, Vector Control and Dynamic of AC Drives, Clarendon Press Oxford, 1990.
    [18] M. N. Marwali, A. Keyhani and W. Tjanaka,” Implementation of indirect vector control on an integrated digital signal processor-based system” IEEE Trans, Energy Conversion vol.14, no.2, pp. 139-146, Jun. 1999.
    [19] A. Arias, L. Romeral, E. Aldabas, and M. G. Jayne,“Improving direct torque control by means of fuzzy logic”Electronics Letters, vol.37, no.1, pp. 69-71, Jan. 2001.
    [20] P.Z. Grabowski, M.P. Kazmierkowski, B.K. Bose, and F. Blaabjerg,“A simple Direct-Torque Neuro-Fuzzy control of PWM- Inverter-Fed induction motor drive ”IEEE Trans. Industrial Electronics, vol.47, no.4, pp.863-870, Aug. 2000.
    [21] Y. S. Lai,“New random technique of inverter control for common mode voltage reduction of Inverter-Fed induction motor drives”IEEE Trans. Energy Conversion, vol.14, no.4, pp.1139-1146, Dec. 1999.
    [22] Y. S. Lai, H. C. Huang, Y. S. Kuan, and C. M. Young,“A new random inverter control technique for motor drive”APEC‘98, Conference Proceedings Applied Power Electronics Conference and Exposition, vol.1, pp.101-107, 1998.
    [23] K. B. Lee, J. H. Song, Ick Choy and Ji-Yoon Yoo, “Torque ripple reduction in DTC of induction motor driven by three-level inverter with low switching frequency” IEEE Trans. Power Electronics, vol.17 no.2, pp.255-264, Mar. 2002.
    [24] F. Profumo, G. Griva, M. Pastorelli, J. MoreiraDe and R. Doncker, “Universal field oriented controller based on air gap flux sensing via third harmonic stator voltage” IEEE Trans. Industry Applications, vol. 30, no.2, pp.448-455, Mar./Apr. 1994.
    [25] L. Kreindler, J. C. Moreira, A. Testa and T. A.Lipo, “Direct field orientation controller using the stator phase voltage third harmonic” IEEE Trans. Industry Applications, vol.30, no.2, pp.441-447, Mar./Apr. 1994.
    [26] L. Zhen and L. Xu, “ Sensorless field orientation control of induction machines based on a mutual MRAS scheme” IEEE Trans. Industrial Electronics, vol.45, no.5, pp.824-831, Oct. 1998.
    [27] C. Schauder, “ Adaptive speed identification for vector control of induction motors without rotational transducers ” IEEE Trans, Industry Applications, vol.28, no.5, pp.1054-1061 Sep./Oct. 1992.
    [28] M. E. Elbuluk, Liu Tong and I. Husain, “ Neural-network-based model reference adaptive systems for high-performance motor drives and motion controls” IEEE Trans. Industry Applications, vol.38, no.3, pp.879-886, May./Jun. 2002.
    [29] J. Maes, J. A. Melkebeek, “Speed-sensorless direct torque control of induction motors using an adaptive flux observer” IEEE Trans. Industry Applications, vol.36, no.3, pp.778-785, May./Jun. 2000.
    [30] M. Tsuji, S. Chen, K. Izumi and E. Yamada, “ A sensorless vector control system for induction motors using q-axis flux with stator resistance identification” IEEE Trans. Industrial Electronics, vol.48, no.1, pp.185-194, Feb. 2001.
    [31] Y. R. Kim, S. K. Sul and M. H. Park, “ Speed sensorless vector control of induction motor using extended Kalman filter” IEEE Trans, Industry Applications, vol.30, no.5, pp.1225-1233, Sep./Oct. 1994.
    [32] S. H. Kim, J. Y. Yoo and G. T. Park, “ Speed-sensorless vector control of an induction motor using neural network speed estimation” IEEE Trans. Industrial Electronics, vol.48, no.3, pp.609-614, Jun. 2001.
    [33] P. Vas, Sensorless and Direct Torque Control, Clarendon Press Oxford, 1998.
    [34] J. Faiz, M. B. Sharifian, “Different techniques for real time estimation of an induction motor rotor resistance in sensorless direct torque control for electric vehicle” IEEE Trans. Energy Conversion, vol.16, no.1, pp.104-109, Mar. 2001.
    [35] J. N. Nash, “Direct torque control, induction motor vector control without an encoder” IEEE Trans. Industry Applications, vol.33, no.2, pp.333-341, Mar./Apr. 1997.
    [36] U. Baader, M. Depenbrock and G. Gierse, “Direct self control (DSC) of inverter-fed induction machine: A basis for speed control without speed measurement” IEEE Trans. Industry Applications, vol.28, no.3, pp.581–588,1992.
    [37] T. G. Habetler, F. Profumo, G. Griva, M. Pastorelli, and A. Bettini, “Stator resistance tuning in stator flux field-oriented drive using an instantaneous hybrid flux estimator” IEEE Trans. Power Electronics, vol.13, pp. 125–133, Jan. 1998.
    [38] K. D. Husrt, T. G. Habetler, G. Griva, and F. Profumo, “Zero speed tacholess IM torque control: Simply a matter of stator voltage integration” IEEE Trans. Industry Applications, vol. 34, pp.790–795, July./Aug. 1998.
    [39] J. Huand and B. Hu, “New integration algorithms for estimating motor flux over a wide speed range” IEEE Trans. Power Electronics, vol. 13, pp.969–976, Sept. 1998.
    [40] M. H. Shin; D. S. Hyun; S. B. Cho and S. Y. Choe, ”An improved stator flux estimation for speed sensorless stator flux orientation control of induction motors” IEEE Trans. Power Electronics, vol.15, no.2, pp.312-318, Mar. 2000.
    [41] K. D. Hurst, T. G. Habetler, G. Griva and F. Profumo, “Zero-speed tacholess IM torque control: simply a matter of stator voltage integration” IEEE Trans. Industry Applications, vol.34, no.4, pp.790-795, Jul./Aug. 1998
    [42] N. R Idris and A. H. M Yatim, “An improved stator flux estimation in steady-state operation for direct torque control of induction machines” IEEE Trans. Industry Applications, vol.38, no.1, pp.110-116, Jan./Feb. 2002.
    [43] D. C. Lee and G. M. Lee, “A novel overmodulation technique for space-vector PWM inverters,” IEEE Trans. Power Electronics, Vol.13, No.6, pp. 1144 –1151, Nov. 1998.
    [44] Y. F. Zhao and T.A. Lipo, “Space vector PWM control of dual three-phase induction machine using vector space decomposition,” IEEE Trans. Industry Applications, vol.31, no.5, pp.1100 –1109, Sept./Oct. 1995.
    [45] TMS320C24x DSP Controllers Reference Set, Texas Instruments, 1997.
    [46] TMS320C24x DSP Controllers Evaluation Module Technical Reference Set, Texas Instruments, 1997.
    [47] TMS320C1x/C2x/C2xx/C5x Assembly Language Tools User‘s Guide, Texas Instruments, 1995.
    [48] TMS320C2xx C Source Debugger User‘s Guide, Texas Instruments, 1995.
    [49] TMS320C1x/C2x/C2xx/C5x Optimizing C Compiler User‘s Guide, Texas Instruments, 1995.
    [50] Digital Signal Processing Solution for AC Induction Motor, Application Report Literature Number: BPRA043, Texas Instruments, 1997.
    [51] TMS320F20x/F24x DSP Embedded Flash Memory Technical Reference, Application Report Literature Number: SPRU282, Texas Instruments, 1998.
    [52] B. K. Bose, Modern Power Electronics and AC Drivers, Prentice Hall, 2002.
    [53] D. Casadei, G. Serra and A. Tani, “ Steady-state and transient performance evaluation of a DTC scheme in the low speed range” IEEE Trans. Power Electronics, vol.16, no.6, pp.846-851, Nov. 2001.
    [54] J. S. Ryu, I. S. Yoon, K. S. Lee, and S. C. Hong, “Direct torque control of induction motors using fuzzy variable switching sector” IEEE Symposium. Industrial Electronics, vol.2, pp.901-906, 2001.
    [55] X. Yang and W. Oghanna, “Fuzzy direct torque control of induction motor with stator flux estimation compensation” IEEE Conference. Industrial Electronics, vol.2, pp.505-510, 1997.
    [56] X. Yang and W. Oghanna, “Study on fuzzy control of induction machine with direct torque control approach” IEEE Symposium. Industrial Electronics, vol.2, pp.625-630, 1997.
    [57] Y. Tang and L. Wu, “Fuzzy logic application for intelligent control of a variable speed drive” IEEE Trans. Energy Conversion, vol.9, no.4, pp.679-685, Dec. 1994.
    [58] S. A. Mir, M. E. Elbuluk, and D.S. Zinger, “Fuzzy implementation of direct self-control of induction machines” IEEE Trans. Industry Applications, vol.30, no.3, pp.729-735, May./June. 1994.
    [59] 王文俊編著,認識Fuzzy,全華科技圖書,中華民國90年9月。
    [60] 孫宗瀛、楊英魁編著,Fuzzy 控制:理論、實作與應用,全華科技圖書,中華民國86年3月。
    [61] G. Guidi and H. Umida, “A novel stator resistance estimation method for speed-sensorless induction motor drives” IEEE Trans. Industry Applications, vol.36, no.6, pp.1619-1627, Nov./Dec. 2000.
    [62] K. Akatsu and A. Kawamura, “Sensorless very low-speed and zero-speed estimations with online rotor resistance estimation of induction motor without signal injection” IEEE Trans. Industry Applications, vol.36, no.3, pp.764-771 May./Jun. 2000.
    [63] 劉昌煥編著,交流電機控制:向量控制與直接轉矩控制原理,東華書局,中華民國90年9月。
    [64] 吳思正,空間向量直接轉矩控制,電機月刊,第六卷,第七期,pp.151-157,1996。
    [65] 王文智、王俊傑,無量測感應馬達之驅動系統,電機月刊,第六卷,第七期,pp.129-133,1996。
    [66] 蔡明祺、李士杰,伺服馬達與驅動控制技術概況,電力電子技術月刊,1996。
    [67] 林正浩,“三相感應電動機之DSP直接轉矩控制系統研製”,國立台灣大學電機工程所碩士論文,中華民國90年6月。
    [68] 陳皇志,“馬達之新型直接轉矩控制研究”,中央大學電機所碩士論文,民國90年6月。
    [69] 江坤信,“感應馬達之直接轉矩控制之低轉速驅動補償策略” 中央大學電機所碩士論文,民國91年6月。
    Advisor
  • K.K. Shyu(徐國鎧)
  • Files
  • 90521007.pdf
  • approve immediately
    Date of Submission 2003-06-30

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.