Title page for 90324027


[Back to Results | New Search]

Student Number 90324027
Author Hao-Zhong Yang(楊浩忠)
Author's Email Address No Public.
Statistics This thesis had been viewed 2604 times. Download 1787 times.
Department Chemical and Materials Engineering
Year 2002
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title LiCoO2 Synthesized by a TEA-Sucrose Combustion Method as a Cathode Material in Lithium Batteries
Date of Defense 2003-05-20
Page Count 93
Keyword
  • Cathode Materials
  • Combustion symthesis
  • LiCoO2
  • Lithium ion battery
  • Sucrose
  • Triethanolamine
  • Abstract This dissertation covers the synthesis and lithium-intercalating properties of LiCoO2 prepared by a combustion process with triethanolamine (TEA) as a complexant and sucrose as a fuel-cum-complexing agent. The synthesis parameters – TEA: sucrose mole ratio, and temperature and duration of calcination – as well as lithium stoichiometry were optimized in order to obtain products with the best electrochemical activity. Structural properties of the products were investigated by x-ray diffraction, surface morphology by scanning electron microscopy and transmission electron microscopy, and surface area by the BET method. Lithium intercalation properties were studied by galvanostatic charge-discharge studies at different rates and voltage windows. The various redox regions and phase changes occurring during the charge-discharge processes were studied by cyclic voltammetry.
    The precursors for the synthesis of LiCoO2 were metal nitrates dissolved in an aqueous solution of TEA and sucrose in various mole ratios: 1:1, 1:2, 1:4, 1:8 and 1:16. Although phase-pure products could be obtained by a 10-h calcination at 600°C, the crystallinity of the product improved with the duration and temperature of calcination. The optimal synthesis conditions were found to be a 10-h calcination at 800°C. The electrochemical properties of the products were correlated with their surface area and R-parameter. Sucrose was first hydrolyzed to glucose and fructose, and subsequently oxidized to gluconic or polyhydroxy acids, which coordinated with the cations and cross-linked with the TEA. TEA complexes with cations and immobilizes them in a carbonaceous matrix formed from sucrose. Thus, upon decomposition of the precursor, the cations find themselves dispersed uniformly in a carbonaceous matrix. Sucrose also acts as a fuel, providing the energy for product formation and sintering. However, a large amount of sucrose in the precursor can also reduce the partial pressure of oxygen in the reaction zone, adversely affecting the product characteristics. At the same time, at low concentrations of TEA, less chelation of the cations means less distribution. The product formation is discussed in terms of the TEA:sucrose ratios.
    At a 0.1 C rate between 3.0 and 4.3 V, the 10-h 800°C product gave a first-cycle discharge capacity of 156 mAh/g, which faded to 153 mAh/g in fifth cycle, with charge retention of 98%. A subsequent cycling between 3.0 and 4.4 V at a 0.1 C rate gave a discharge capacity of 167 mAh/g in the sixth cycle, fading to 165 mAh/g in tenth cycle, registering a charge retention of 98%. The superior performance of the material compared to the commercial LiCoO2 sample was also demonstrated. For example, at a 0.2 C rate between 3.0 and 4.2 V, not only was the initial capacity of our material higher (137 mAh/g) than that of the commercial sample (132 mAh/g), its cyclability was also higher: 100 cycles versus 68 for the commercial product for an 80% charge-retention cut-off value.
       Lithium-rich LixCoO2 (where x = 1.05~1.15) phases were also studied. The excess lithium stoichiometric phases were synthesized to compensate for any lithium that might be lost during heat treatment. The first-cycle discharge capacities of these products were 157, 154 and 155 mAh/g, respectively, for x = 1.05, 1.10 and 1.15 at a charge-discharge rate of 0.1 C between 3.0 and 4.3 V. When the voltage window was 3.0~4.4 V in the sixth cycle, the corresponding capacities were 166, 165 and 166 mAh/g, fading to 162, 163 and 164 mAh/g in the tenth cycle.
    Table of Content 摘要                                    I
    誌謝                                 IV
    目錄                                 V
    圖目錄                                VIII
    表目錄                                 X
    第一章 緒論                                1
    1-1. 簡介                                 1
    1-2. 研究目的與大綱                        5
    第二章 文獻回顧                             9
    2-1. 傳統鋰鈷氧合成方法                          9
      1. 高溫固態法之製程特色與機制                    9
      2. 溶凝膠法之製程特色與機制                   10
      3. 共沈澱法之製程特色與機制                   11
    2-2. 以燃燒法製備鋰鈷氧材料之起因與緣由               12
    2-3. 燃燒法之歷史、種類、應用及燃燒產物之緻密化          14
     1. 簡單燃燒合反應系統                        15
      1.1 簡單SHS反應系統                        15
      1.2 熱熔接型式反應系統                        16
      1.3 錯合氧化物燃燒合成法                        17
    2. 其他種類之燃燒合成製程                        18
      2.1 固態置換法(Solid-state Metathesis, SSM)          18
      2.2 火焰合成法(Flame Synthesis)                   18
      2.3 具有氧化還原作用之化合物與混合物之燃燒合成法(Combustion
        Synthesis of Oxide Materials Using Redox Compounds and
        Mixtures)                             20
      2.4 結合燃燒合成與氣體輸送(Coupled Combustion Synthesis and
        Vapor Transport)                          30
      2.5 薄膜製造與塗佈改質技術(Thin-films and Coatings)      30
     3. 燃燒合成材料緻密化                       30
    2-4 錯合劑種類與錯合反應之反應機制                   31
    第三章 實驗方法                            36
    3-1. 實驗藥品器材                            36
    3-2. 實驗儀器                            37
    3-3. 實驗步驟                            38
     1. LiCoO2陰極材料合成                        38
     2. 材料鑑定分析                            43
      2.1 X光繞射(XRD)                        43
      2.2 掃瞄式電子顯微鏡(SEM)                   43
      2.3 感應耦合電漿質譜分析儀(ICP-MS)               43
      2.4 表面積測試(BET)                        44
      2.5 顆粒粒徑測試(TEM)                        45
     3. 材料電化學特性分析                        45
      3.1 電池性能測試                            45
      (1)陰極之極片製作                        45
      (2)硬幣型電池組裝                        45
      (3)電池性能測試方法步驟                       45
      3.2 慢速循環伏安分析(Slow Scan Cyclic Voltammetry)          48
      (1) 實驗條件                             48
      (2) CV電極製作                             48
    第四章 結果與討論                            49
    1. 鑑定分析                            49
     1.1 XRD材料結構分析                        49
     1.2 SEM材料表面型態分析                        55
      (1)錯合劑與燃料比例變因                   55
      (2)煆燒溫度與時間變因                        56
     1.3 BET材料表面積鑑定                        61
     1.4 TEM顆粒粒徑測試                        62
     1.5 ICP-AES元素計量鑑定分析                   63
      (1)錯合劑與燃料比例變因                   63
      (2)煆燒溫度與時間變因                        63
    2. 電化學分析                            64
     2.1 電池性能測試                            64
      (1) 錯合劑與燃料比例變因                   64
      (2)煆燒溫度與時間變因                        70
      (3)鋰計量                            75
      (4)長循環測試                            78
     2.2 慢速循環伏安分析                        82
    第五章 結論                            84
    第六章 參考文獻                            86
    附錄:碩士論文研究兩年期間,有關研究成果所發表論文狀況說明      92
    Reference [1] S.G. Kang , S.Y. Kang, K.S. Ryu and S.H. Chang, Solid State Ionics, 120, 155, 1999.
    [2] C. Y. Yao, T. H. Kao, C. H. Cheng, J. M. Chen and W. M. Hurng, J. Power
    Source, 54, 491, 1995.
    [3]陳俊宏, 碩士論文, “燃燒合成法氮化鋁基板材料研究”, 國立成功大學, 中華民國台灣(2001).
    [4] W. D. Johnston, R. R. Heikes and D. Sestrich, J. Phys. Chem. Solids, 7, 1 (1958).
    [5] K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, Mater. Res. Bull, 15, 783 (1980).
    [6] J.B. Goodenough, K. Mizushima, T. Takeda, Jpn. J. Appl. Phys.,19, 305 (1980).
    [7] T. Nagaura, K. Tozawa, Progr. Batt. Solar Cells, 9, 209 (1990).
    [8] J. Pierre and P. Ramos, J. Power Sources, 54, 120 (1995).
    [9] M. Kakihana, J. Sol-Gel Science and Technology, 6, 7 (1996).
    [10] Y. K. Sun, I. H. Oh, S. A. Hong, J. Mater. Sci., 31, 3617 (1996).
    [11] G. T. K. Fey, K. S. Chen, B. J. Hwang, and Y. L. Lin, J. Power Sources, 68/2, 519 (1997).
    [12] 袁正宇, 碩士論文, "鋰離子電池層狀及反尖晶石陰極材料溶膠-凝膠法製程研究", 國立中央大學, 中華民國臺灣 (1999).
    [13] P. N. Kumta, D. Gallet. A. Waghray, G. E. Blomgren and M. P. Setter, J. Power Sources, 72, 91 (1998).
    [14] Y. K. Sun, J. Power Sources, 83, 223, (1999).
    [15]J. Kim, P. Fulmer, and A. Manthiram, Material Research Bulletin, 34, 571 (1999).
    [16] R. Gover, M. Yonemura , A. Hirano, R. Kanno, Y. Kawamoto, C. Murphy, B. Mitchell and J. W. Richardson Jr., J. Power Sources, 81, 535 (1999).
    [17] H. Yan, X. Huang, Z. Lu, H. Huang, R. Xue, and L. Chen, J. Power Sources, 68, 530 (1997).
    [18] H. Yan, X. Huang, H. Li and L. Chan, Solid State Ionics, 113, 11 (1998).
    [19] V. Subramanian, C.L. Chen, H.S. Chou, G.T.K. Fey, J. Mater. Chem., 11, 3348 (2001).
    [20] C. K. Jorgensen, in Atoms and Molecules (Academic Press, London, 1962), p. 80.
    [21] C. J. Brinker and G. W. Scherer, SOL-GEL SCIENCE-The Physics and Chemistry of Sol-Gel Processing, p.834.
    [22] D.H. Kim, E.D. Jeong, S.P. Kim, Y.B. Shim, Bull. Korean Chem. Soc., 21, 1125 (2000).
    [23] E.D. Jeong, M.S. Won, Y.B. Shim, J. Power Sources, 70, 70 (1998).
    [24] M. Tabuchi, K. Ado, H. Kobayashi, H. Sakaebe, H. Kageyama, C. Masquelier, M. Yonemura, A. Hirano, R. Kanno, J. Mater. Chem., 9, 199 (1999).
    [25] C.H. Lu, P.Y. Yeh, J. Mater. Chem., 10, 599 (2000) .
    [26] T. Ogihara, T. Yanagawa, N. Ogata, K. Yoshida, Y. Mizuno, S. Yonezawa, M. Takashima, N. Nagata, K. Ogawa, Denki Kagaku, 61, 1339,(1993).
    [27] G.T.K. Fey, R.F. Shiu, V. Subramanian, J.G. Chen, C.L. Chen, J. Power Sources, 103, 265 (2002).
    [28] G.T.K. Fey, V. Subramanian, J.G. Chen, Electrochem. Commun., 3, 234 (2001).
    [29] G.T.K. Fey, V. Subramanian, J.G. Chen, Mater. Lett., 52, 197 (2002).
    [30] G.T.K. Fey, V. Subramanian, C.Z. Lu, Ionics, 7, 210 (2001).
    [31] P. Barboux, J.M. Tarascon, F.K. Shokoohi, J. Solid State Chem., 94, 185 (1991).
    [32] P.-J. Cho, E.-D. Jeong, Y.-B.Shim, Bull. Korean Chem. Soc., 19, 39 (1998).
    [33] M. Yoshio, H. Tanaka, K. Tominaga, H. Noguchi, J. Power Sources, 40, 347 (1992).
    [34] Z.S. Peng, .C.R. Wan, C.Y. Jiang, J. Power Sources, 72, 215 (1998).
    [35] S. Rodrigues, N. Munichandraiah, A.K. Shukla, J. Power Sources, 102, 322 (2001).
    [36] R.F. Shiu, Master’s Degree Dissertation, National Central University, Taiwan,
    R.O.C. (2000).
    [37] G.T.K. Fey, V. Subramanian, C.Z. Lu, Solid State Ionics (accepted for
    publication).
    [38] G.T.K. Fey, J. G. Chen, V. Subramanian, D. L. Huang, T. Akai, H. Masui, Mater. Chem. Phys., 79, 21, 2003.
    [39] C. Julien, M. A. C-Lopez, T. Mohan, S. Chitra, P. Kalyani and S. Gopukumar,
    Solid State Ionics, 135, 241 (2000).
    [40] A. Sen, P. Pramanik, Mater. Lett., 50, 287 (2001).
    [41] H. Singh Nalwa, (Ed.) Handbook of Nanostructured materials and
    Nanotechnology, Vol. I: Synthesis and Processing, Academic Press, New York, 198.
    [42] G. Beaucage, J.E. Mark, G.T. Burns, (Eds.), Nanostructured Powders and their Industrial Applications, Materials Research Symposia Proceedings, California, USA, 1998.
    [43] A. Adak, A. Pathak, P. Pramanik, J. Mater. Sci. Lett., 17,559 (1998).
    [44] A.J. Fanelli, J. V. Burlew, J. Am. Ceram. Soc., 69, C-174 (1998).
    [45] R.N. Das, A. Pathak, P. Pramanik, J. Am. Ceram. Soc., 81, 3357 (1998).
    [46] N. Yamazoe, Sens. Actuators, B 5, 7 (1991).
    [47] D.S. Ginley, C. Bright, Mater. Res. Soc. Bull., 25, 15 (2000).
    [48] H.Z. Zhang, Solid State Commun., 109, 677 (1999).
    [49] H.J. Dai, Nature, 375, 769 (1995).
    [50] Z.W. Pan, Adv. Mater., 12, 1186 (2000).
    [51] Z.L. Wang, App. Phys. Lett., 77, 3349 (2000).
    [52] W. Han, S. Fan, Q. Li, Y. Hu, Science, 277, 1287 (1997).
    [53] X.F. Duan, C.M. Lieber, J. Am. Chem. Soc., 122, 188 (2000).
    [54] N. Treuil, C. Labrugere, M. Mentrier, J. Portier, G. Campet, A. Deshayes, J.C. Frison, S.J. Hwang, S.W. Song, J.H. Choy, J. Phys. Chem. B., 103, 2100 (1999).
    [55] F. Zhang, S. Passerini, B.B. Owens, W.H. Smyrl, Electrochem. Solid-State Lett., 4, A221 (2001).
    [56] S. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature, 407, 496 (2000).
    [57] S. H. Kang, J.B. Goodenough, L.K. Rabenberg, Electrochem. Solid-State Lett., 4, A49 (2001).
    [58] P. Lucas, C.A. Angel, J. Electrochem. Soc., 147, 4459 (2000).
    [59] J. Kim, A. Manthiram, Electrochem. Solid-State Lett., 1, 207 (1998).
    [60] N. Li and C. R. Martin, J. Electrochem. Soc., 148, 164 (2001).
    [61] N. Li, C. R. Martin and B. Scrosati, Electrochem. Solid State Lett., 3, 316 (2000).
    [62] C. R. Martin N. Li and B. Scrosati, J. Power Sources, 97, 240 (2001).
    [63] M. J. Parent, S. Passerini, B. B. Owens and W. H. Smyrl, J. Electrochem. Soc., 146, 1346 (1999).
    [64] N. Li, C. J. Patrissi and C. R. Martin, J. Electrochem. Soc., 147, 2044 (2000).
    [65] C. J. Patrissi and C. R. Martin, J. Electrochem., 146, 3176 (1999).
    [66] C. J. Patrissi and C. R. Martin, J. Electrochem., 148, 1247 (2001).
    [67] J. H. Choy, D. H. Kim, C. W. Kwon, S. J. Hwang and Y. I. Kim, J. Power Sources, 77, 1 (1999).
    [68] A. Janbey, R.K. Pati, S. Tahir, P. Pramanik, J. Euro. Ceram. Soc., 21, 2285 (2001).
    [69] J.J. Kingsley, K.C. Patil, Mater. Lett., 6, 427 (1988).
    [70] C.N.R. Rao, in: Chemical Approaches to the Synthesis of Inorganic Materials, Wiley-Eastern, New Delhi, p.28 (1994).
    [71] A.G. Merzhanov, in: Chemistry of Advanced Materials: A Chemistry for the 21st Century, C.N.R. Rao (Ed.) Blackwell, London, p.19 (1993).
    [72] J. Subrahmanyam, M. Vijayakumar, J. Mater. Sci., 27, 6249 (1992).
    [73] A.G. Merzhanov, Int. J. Self-Propag. High-Temp. Synth., 2, 113 (1993).
    [74] J.J. Moore, H.J. Feng, Prog. Mater. Sci., 39, 243 (1995).
    [75] J.J. Moore, H.J. Feng, Prog. Mater. Sci., 39, 275 (1995).
    [76] K.C. patil, S.T. Aruna, S. Ekambaram, Curr. Opinion Solid State Mater. Sci., 2, 158 (1997).
    [77] V. Hlavacek, Ceram. Bull., 70, 240 (1991).
    [78] J. J. Berzelius, Prog. Ann., 4, 126 (1825).
    [79] W. Muthmann and K. Kraft, Liebigs Ann. Chem., 325, 261 (1902).
    [80] P. P. Alexander, U. S. Pat. No. 2372168 (1943), No. 2425711 (1944), No. 2467647 (1949).
    [81] S. Krapf, Ber. Dtsch. Keram. Ges., 31, 18 (1954).
    [82] J. W. McCauley, Ceram. Eng. Sci. Proc., 11, 1137 (1990).
    [83] Y. Miyamoto, M. Koizumi and O. Yamada, J. Am. Ceram. Soc., 67, 224 (1984).
    [84] M. Koizumi and Y. Miyamoto, Combustion and Plasma Synthesis of High-Temperature Materials P.54, VCH, Weinheim (1990).
    [85] J. D. Walton and N. E. Poulos, J. Am. Ceram. Soc., 42, 40 (1959).
    [86] O. Odawara and J. Ikeuchi, J. Jpn. Inst. Metals, 45, 316 (1981).
    [87] R. A. Cutler, A. V. Virkar and J. B. Holt. Ceram. Engng Sci. Proc., 6, 715 (1985).
    [88] K. V. Logan and J. D. Walton, Ceram. Engng Sci. Proc., 5, 725 (1984).
    [89] I. M. Low, J. Mater. Sci. Lett., 11, 715 (1992).
    [90] L. L. Wang, Z. A. Munir and J. B. Holt, Combustion and Plasma Synthesis of High-Temperature Materials p.204. VCH, Weinheim. (1990).
    [91] S. A. Karataskov, V. I. Yuhkvid and A. G. Merzhanov, Combust. Explos. Shock Waves, 21, 687 (1985).
    [92] V. I. Yukhvid, S. A. Karataskov et al., Proceeding of the First US-Japanese Workshop on Combustion Synthesis p.7. National Research Institute for Metals, Tokyo, Japan (1990).
    [93] M. Eslamloo-Grami and Z. A. Munir, Mater. Sci. Report, 3, 227 (1989).
    [94] R. K. Stringer and L. S. Williams, Special Ceramics Vol. 4, p. 37. British Ceramic Research Association, Academic Press, New York (1967).
    [95] P. B. Avakyan, M. D. Nersesyan and A. G. Merzhanov, Am. Ceram Soc. Bull, 75, 50 (1996).
    [96] R. E. Treece, E. G. Gillan and R. B. Kaner, Comment Inorganic Chem, 16, 313 (1995).
    [97] E. G. Gillan and R. B. Kaner, Chem Mater, 8, 333 (1996).
    [98] I. Glassman, K. A. Davis and K. Brezinsky, Twenty-Fourth Symposium on
    Combustion/ The Combustion Institute, 1877 (1992).
    [99] M. S. Wooldridge, S. A. Danczyk and J. Wu, NanoStructured Materials, 11, 955 (1999).
    [100] K. C. Patil and R. Soundararajan, Ind. J. Chem Edn., 6, 29 (1979).
    [101] K. C. Patil and M. M. A. Sekar, Int. J. Self-Propag High-Temp Synth, 3, 181
    (1994).
    [102] K. C. Patil, Bull Mater Sci., 16, 533 (1993).
    [103] S. T. Aruna and K. C. Patil, J. Mater Synth Processing, 4, 175 (1996).
    [104] S. Ramesh, S. S. Manoharan, M. S. Hegde and K. C. Patil, J. Catal., 157, 749
    (1995).
    [105] S. Ekambaram and K. C. Patil, Bull Mater Sci., 18, 921 (1995).
    [106] S. Ekambaram and K. C. Patil, J. Alloys Compounds, 1997, in press.
    [107] M. Kottaisamy, D. Jeyakumar, R. Jagannathan and M. R. Mohan, Mater Res.
    Bull, 31, 1013 (1996).
    [108] K. C. Patil, S. Ghosh, S. T. Aruna and S. Ekambaram, The Indian Potter, 34, 1 (1996).
    [109] M. Muthuraman, N. A. Dhas and K. C. Patil, J. Mater Synth Processing, 4, 115
    (1996).
    [110] S. Ekambaram, N. A. Dhas and K. C. Patil, Int. J. Self-Propag High-Temp
    Synth, 4, 85 (1995).
    [111] R. G. Chandran, B. K. Chandrashekar, C. Ganguly and K. C. Patil, J. Eur.
    Ceram Soc., 16, 843 (1996).
    [112] M. Muthuraman, K. C. Patil, S. Senbagaraman and A. M. Umarji, Mater Res 
    Bull, 31, 1375 (1996).
    [113] W. Yang, G. Zhang, X. Jingying, L. Yang and Q. Liu, J. Power Sources, 81, 412
    (1999).
    [114] C. Julien, S. S. Michael and S. Ziolkiewicz, J. Inorganic Materials, 1, 29 (1999).
    [115] H. J. Choi, K. M. Lee and J. G. Lee, J. Power Sources, 103, 154 (2001).
    [116] H. B. Park, J. Kim and C. W. Lee, J. Power Sources, 92, 124 (2001).
    [117] T. Mimani and K. C. Patil, Mater. Phys. Mech., 4, 134 (2001).
    [118] R. W. Rice and W. J. McDonough, J. Am. Ceram. Soc., 68, 122 (1985).
    [119] A. G. Merzhanov and A. E. Averson, Combust. Flame, 16, 89 (1971).
    [120] R.K. Pati, J.C. Ray, P. Pramanik, J. Am. Ceram. Soc., 84, 2849 (2001).
    [121] J.C. Ray, P. Pramanik, S. Ram, Mater. Lett., 48, 281 (2001).
    [122] P. Pramanik, Bull. Mater. Sci., 18, 819 (1995).
    [123] A. B. Panda, A. Pathak and P. Pramanik, Materials Lett., 52, 180 (2002).
    [124] A. K. Adak and P. Pramanik, Materials Lett., 30, 269 (1997).
    [125] R. K. Pati, J. C. Ray and P. Pramanik, Materials Lett., 44, 299 (2000).
    [126] R. N. Das and P. Pramanik, Materials Lett., 46, 7 (2000).
    [127] A. Sen and P. Pramanik, Materials Lett., 52, 140 (2002).
    [128] J. C. Ray, A. B. Panda and P. Pramanik, Materials Lett., 53, 145 (2002).
    [129] J. C. Ray, C. R. Saha and P. Pramanik, J. Eu. Ceramic Soc., 22, 851 (2002).
    [130] J. N. Reimers, E. Rossen, C. D. Jones, J. R. Dahn, Solid State Ionics, 61, 335,
    1993.
    [131] R. J. Gummow, M. M. Thackeray, W. I. F. David, S. Hull, Mater. Res. Bull., 27,
    327, 1992.
    [132] I. H. Oh, S. A. Hong, Y. K. Sun, J. Mater. Sci., 32, 3177, 1997.
    [133] D. Aurbach, K. Gamolsky, B. Markovsky, G. Salitra, Y. Gofer, U. Heider, R.
    Oesten, M. Schmidt, J. Electrochem. Soc., 147, 1322, 2000.
    [134] J. Cho, B. Park, J. Power Sources, 92, 35, 2001.
    [135] Y. K. Sun, I. H. Oh, J. Mater. Sci. Lett., 16, 30, 1997.
    [136] K. Dokko, M. Mohamedi, Y. Fujita, T. Itoh, M. Nishizawa, M. Umeda, I.
    Uchida, J. Electrochem. Soc., 148, A422, 2001.
    [137] S. Levasseur, M. Menetrier, E. Suard, C. Delmas, Solid State Ionics, 128, 11,2000.
    Advisor
  • G. Ting-Kuo Fey(費定國)
  • Files
  • 90324027.pdf
  • approve immediately
    Date of Submission 2003-06-25

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.