Title page for 90242005


[Back to Results | New Search]

Student Number 90242005
Author WEI-YEN WOON(Ű)
Author's Email Address s0242005@cc.ncu.edu.tw
Statistics This thesis had been viewed 1859 times. Download 590 times.
Department Physics
Year 2004
Semester 1
Degree Ph.D.
Type of Document Doctoral Dissertation
Language English
Title Study on synchronous firing dynamics in rat cortical neuronal network
Date of Defense 2005-01-13
Page Count 100
Keyword
  • calcium imaging
  • neuronal network
  • synchronous firing
  • Abstract Abstract
    We study the synchronous firing activities in cortical neuronal network culture. Under depletion of extracellular Mg2+, synchronous firing activity is observed using confocal fluorescence microscopy. The firing patterns of the synchronous firing activities are found to closely correlated to the network morphology. It is found that the high density culture develops into synchronous firing prior to the low density one at early stage. The firing frequency of synchronous firing is generally an increasing function of day in vitro (DIV). It is further found that the high density culture develops into unique firing pattern with high rate bunched firing peaks separated by long quiescence periods. Using non-linear dynamics analysis, we analyze the phase diagram of the inter-event interval (IEI) of synchronous firing and reconstruct the strange attractor structure. It is found that the strange attractor exhibits period two characteristics and the histograms of IEI show double peak and broader distribution for the unique firing pattern. The mechanism behind the emergence of the long quiescence period is investigated by measuring the correlation between the long quiescence and long bursting period, and explained in term of extended ion depletion. Using fast line laser scanning, we identify master and slave during synchronous firing, showing spatiotemporal heterogeneity in the synchronous firing activity. Micro-dissection is performed to perturb the synchrony of the network firing activity as a preliminary est for the small world network architecture.
    Table of Content Contents
    1.Introduction                           1
    2.Background                           7
    2.1 Integrate-fire systemsKKKKKKKKKKKKKKKKKKKKK7
    2.2 NeurobiologyKKKKKKKKKKKKKKKKKKKKKKKK.9
     2.21 Basic blue print for living organismsKKKKKKKKKKKKK...9
     2.2.2 Biology of neuron at cellular levelKKKKKKKKKKKKKK..11
     2.2.3 Developmental evolution of neuronal subtypes in cerebral cortexKK..20
     2.2.4 Synchronization in cerebral cortex: epilepsy due to inhibition failure vs. synchronous firing under Mg2+ depletionKKKKKKKKKKKK21
    2.3 Synchronization in complex network: Small world architectureKKKK.22
    2.4  Non-linear dynamical model for Neuronal NetworkKKKKKKKKK27
    3.Experiment and data analysis                   27
    3.1Primary cortical neuronal cultureKKKKKKKKKKKKKKKK 28
    3.2Fluorescence staining: calcium indicatorKKKKKKKKKKKK  29
    3.3Observation platform: confocal microscopy and in-situ incubation chamberKKKKKKKKKKKKKKKKKKKKKKKKKK.30
      3.4 Electrophysiological measurement and local cell manipulation techniquesKKKKKKKKKKKKKKKKKKKKKKKKK.33
    4.Results and discussions                      36  
    4.1Cell density dependence of cortical neuronal network morphologyK KK37
    4.2Synchronous firing in rat cortical neuronal network in vitro: Electrical field potential and fluorescence measurementKKKKKKKKKKKKK..40
    4.3Developmental dynamics of firing pattern of cortical neuronal network during maturationKKKKKKKKKKKKKKKKKKKKKK.44
    4.3.1Data analysis: histogram of inter-event interval and strange attractor reconstructionKKKKKKKKKKKKKKKKKKKKK...46
    4.3.2Long quiescence period during synchronous firing at maturationKKKKKKKKKKKKKKKKKKKKKKK.48
    4.4Emergence of synchronization: identifying the master and slave in synchronous firingKKKK...KKKKKKKKKKKKKKKKK..58
      4.5 Manipulating the firing dynamics: local micro-dissection KKKKKKKKKKKKKKKKKKKKK...64
    5.Conclusion and future work                     67
    6.Appendix                            69
    A1. Protocol for primary cortical neuronal cultureKKKKKKKKKK..68
    A2. Protocol for chemical preparationKKKKKKKKKKKKKKK.77
    A3. Protocol for fluorescence stainingKKKKKKKKKKKKKKK.83
    A4. Protocol for micropipette preparationKKKKKKKKKKKKK...85
    Reference Bibliography
    [1] M. Locher, D. Cigna, and E. R. Hunt, Phys. Rev. Lett. 80, 5212 (1998)
    [2] H. Hempel, L. Schimansky-Geir, and J. Garcia-Ojalvo, Phys. Rev. Lett. 82, 3713 (1999).
    [3] J. F. Linder et al., Phys. Rev. Lett. 75, 3 (1995).
    [4] J. Wang, S. Kadar, P. Jung, and K. Showalter, Phys. Rev. Lett. 82, 855 (1999)
    [5] P. Jung, A. Cornell-Bell, K. S. Madden, and F. Moss, J. Neurophysiol. 79, 1098 (1998).
    [6] C. Van den Broeck, J. M. R. Parrondo, and R. Toral, Phys. Rev. Lett. 73, 3395 (1994)
    [7] K. Wiesenfeld et al, Phys. Rev. Lett. 72, 2125 (1994)
    [8] E. Kandel, J. H. Schwartz and T. M. Jessell, Principle of neural science (McGraw Hill, 2000)
    [9] H.S. Strogatz, Nature, 410, 268 (2001)
    [10] E. M. Izhikevich, IEEE Trans. Neural Networks, 15, 1063 (2003)
    [11] W.Y. Woon and Lin I, Phys. Rev. Lett. 92, 065003 (2004)
    [12] T. Voigt, T. Opitz, and A.D. de Lima, J. Neurosci. 21, 8895 (2001)
    [13] E. Hulata, R. Segev, Y. Shapira, M. Benveniste, and E. Ben-Jacob, Phys. Rev. Lett. 85, 4637 (2000).
    [14] E. Hulata, R. Segev, and E. Ben-Jacob, J. Neurosci. Methods 117, 1 (2002).
    [15] R. Segev, M. Benveniste, Y. Shapira, E. Hulata, A. Palevski, N. Cohen, E. Kapon, and E. Ben-Jacob, Phys. Rev. Lett. 88, 118102 (2002).
    [16] R. Segev, M. Benveniste, Y. Shapira, and E. Ben-Jacob, Phys. Rev. Lett. 90, 168101 (2003).
    [17] H. P.C. Robinson, M. Kawahara, Y. Jimbo, K. Torimitsu, Y. Kuroda, and A. Kawana, J. Neurophysiol. 70, 1606 (1993).
    [18] W.R. Softky and C. Koch, J. Neurosci. 13, 334 (1993)
    [19] M.N. Shadlen and W.T. Newsome, J. Neurosci. 18, 3870 (1998).
    [20] K. Aihara and I. Tokuda, Phys. Rev. E 66, 026212 (2002)
    [21] T. Sauer, Phys. Rev. Lett. 72, 3811 (1994)
    [22] H. Gang et al., Phys. Rev. Lett. 71, 807 (1993)
    [23] H.J. Koester and B. Sakmann, J. Physiol. 529.3, 625 (2000)

    [24] X.S. Wang and E.I. Gruenstein, Brain Research 767, 239 (1997)
    [25] D. Smetters, A. Majewska and R. Yuste, Methods: A Companion to Methods in Enzymology 18, 215 (1999)
    [26] L. C. Jia, M. Sano, Pik-Yin Lai and C. K. Chan, Phys. Rev. Lett. 90, 088101 (2004)
    [27] A. Roxin, H. Riecke and S.A. Solla, Phys. Rev. Lett. 92, 198101 (2004)
    [28] T. Opitz, A.D. De Lima and T. Voigt, J. Neurophysiol. 88, 2196 (2002)
    [29] A.V. M. Herz and J. J. Hopfield, Phys. Rev. Lett. 75, 1222 (1995)
    Advisor
  • Lin-I(L)
  • Files
  • 90242005.pdf
  • approve in 1 year
    Date of Submission 2005-01-24

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.