Title page for 89522033


[Back to Results | New Search]

Student Number 89522033
Author Hung-Chun Wu(§dÂE«T)
Author's Email Address dovewu@ip.csie.ncu.edu.tw
Statistics This thesis had been viewed 1820 times. Download 971 times.
Department Computer Science and Information Engineering
Year 2001
Semester 2
Degree Master
Type of Document Master's Thesis
Language English
Title Bleeding effects for laparoscopic surgery simulation
Date of Defense 2002-06-27
Page Count 96
Keyword
  • bleeding
  • flow simulation
  • fluid flow
  • particle system
  • surface reconstruction
  • surgery simulation
  • Abstract The laparoscopic surgical simulation has been a state-of-art topic in these years. One of the most challenging problems in the surgical simulation is the high fidelity of visual effects. In this paper, a computer graphics approach for simulating bleeding effects is proposed. The proposed hybrid liquid representation modeling (HLRM) approach combines traditional particle system with the isosurface representation using the marching cubes algorithm. For improving the performance and visual effects, the HLRM consists of three components: (i) surface tracking method, (ii) fast Fourier transform, and (iii) dynamic particle representation. The surface tracking method is used to classify particles near the liquid surface. Combining with the surface tracking method, the fast Fourier transform algorithm can be used to find the isolated particles. Finally a dynamic particle representation is proposed for saving the computation time of the marching cubes algorithm. It is essential to render the fair blood surface and sprayed blood needed in surgery simulation. HLRM is able to render the liquid surface and isolated particles in real time. Therefore our approach is suitable for bleeding effects in laparoscopic surgery simulation.
    Table of Content Abstract
    Contents
    List of Figures
    List of Tables
    Chapter 1 Introduction
    1.1 Motivation
    1.2 System overview
    1.2.1 Particle system
    1.2.2 Liquid surface representation
    1.2.3 Collision detection
    1.2.4 Surgical operations
    1.3 Thesis organization
    Chapter 2 Related Work
    2.1 Requirements for bleeding simulation
    2.1.1 Real-time fluid simulation
    2.1.2 Liquid representation
    2.1.3 Surgical operations
    2.1.4 Realistic visualization
    2.2 Fluid simulation techniques
    2.2.1 Computer graphics techniques
    2.2.2 Physical-based techniques
    2.3 Bleeding simulation in virtual surgery
    2.4 Related applications of FFT on fluid simulation
    2.5 Studies on surgical simulation
    Chapter 3 Liquid Representation
    3.1 Particle system
    3.1.1 Attributes in particle system
    3.1.2 Motion of particles
    3.1.3 Physical-based motion
    3.2 Surface reconstruction
    3.2.1 Surface representation
    3.2.2 Marching cubes algorithm
    Chapter 4 Hybrid Liquid Representation Modeling
    4.1 Overview
    4.2 Surface tracking
    4.3 Fast Fourier transform
    4.3.1 Problem definition
    4.3.2 Weight design
    4.3.3 Filters
    4.4 Dynamic particle representation
    Chapter 5 The Integrated Environment for Surgical Simulation
    5.1 Surgical simulation environment
    5.1.1 Realistic virtual human organs
    5.1.2 Realistic virtual laparoscope and surgical instruments
    5.1.3 Visualization of user control
    5.1.4 Virtual surgical instrument control
    5.1.5 User interface
    5.2 Collision detection and collision response
    5.2.1 Collision in the particle system
    5.2.2 Building an AABB tree
    5.2.3 Intersection testing
    5.2.4 Updating an AABB tree after bleeding
    Chapter 6 Experiments
    6.1 Experimental platforms
    6.2 Hybrid liquid representation modeling
    6.3 Bleeding in laparoscopic surgical simulation system
    Chapter 7 Conclusions
    References
    Reference [1] Basdogan, C., C.-H. Ho, and M. A. Srinivasan, ¡§Simulation of tissue cutting and bleeding for laparoscopic surgery using auxiliary surfaces,¡¨ in Proc. MMVR (Medical Meets Virtual Reality) '99 Conference, San Francisco, CA, Jan.20-23, 1999, pp.38-44.
    [2] Basdogan, C., C.-H. Ho, M. A. Srinivasan, S. D. Small, and S. L. Dawson, ¡§Force interactions in laparoscopic simulations: haptic rendering of soft tissues,¡¨ in Proc. of Conf. on Medicine Meets Virtual Reality, San Diego, CA, Jan.19-22, 1998, pp.385-391.
    [3] Bro-Nielsen, M., ¡§Finite element modeling in surgery simulation,¡¨ IEEE Special Issue on Virtual & Augmented Reality in Medicine, Vol.86, No.3, pp.490-503, 1998.
    [4] Chen, J. and N. Lobo, ¡§Towards interactive-rate simulation of fluids with moving obstacles using Navier-Stokes equations,¡¨ Graphical Models and Image Processing, Vol. 57, No. 2, pp.107-116, Mar. 1995.
    [5] Chen, J., N. Lobo, C. E. Hughes, and J. M. Moshell, ¡§Real-time fluid simulation in a dynamic virtual environment,¡¨ IEEE Computer Graphics and Application, Vol. 17, No. 3, pp.52-61, 1997.
    [6] Cotin, S., H. Delingette, and N. Ayache, Efficient Linear Elastic Models of Soft Tissues for Real-time Surgery Simulation, Technique Report TR-98-3510, Institut National de Recherche en Informatique et en Automatique (INRIA), 1998.
    [7] Cover, S. A., N. F. Ezquerra, J. F. O¡¦Brien, R. Rowe, J. Gadacz, and E. Palm, ¡§Interactively deformable models for surgery simulation,¡¨ IEEE Computer Graphics & Applications, Vol.13, No.6, pp.68-75, 1993.
    [8] Fedkiw, R., J. Stam, and H. W. Jensen, ¡§Visual simulation of smoke,¡¨ in Proc. SIGGRAPH 2001, Los Angeles, CA, Aug.12-17, 2001,pp.15-22.
    [9] Foster, N. and D. Metaxas, ¡§Controlling fluid animation,¡¨ in Proc. CGI¡¦97, Hasselt and Diepenbeek, Belgium, June 23-27, 1997, pp.178-188.
    [10] Foster, N. and D. Metaxas, ¡§Modeling the motion of a hot turbulent gas,¡¨ in Proc. SIGGRAPH¡¦97, Los Angeles, CA, Aug.3-8, 1997, pp.181-188.
    [11] Foster, N. and D. Metaxas, ¡§Realistic animation of liquids,¡¨ in Proc. GI¡¦96, Toronto, Canada, May 22-24, 1996, pp.204-212.
    [12] Foster, N. and R. Fedkiw, ¡§Practical animation of liquids,¡¨ in Proc. SIGGRAPH 2001, Los Angeles, CA, Aug.12-17, 2001, pp.23-30.
    [13] Fournier, A. and W. T. Reeves, ¡§A simple model of ocean waves,¡¨ in Proc. SIGGRAPH¡¦86, Dallas, Aug. 18-22, 1986, pp.75-84.
    [14] Goss, M. E., ¡§A real-time particle system for display of ship wakes,¡¨ IEEE Computer Graphics and Applications, Vol.10, No.3, pp.30-35, 1990.
    [15] Kass, M. and G. Miller, ¡§Rapid, stable fluid dynamics for computer graphics,¡¨ in Proc. SIGGRAPH¡¦90, Dallas, Aug. 6-10, 1990, pp.49-57.
    [16] Kuhn, C., U. Kuhnapfel, H.-G. Krumm, and B. Neisius, ¡§A ¡¥virtual reality¡¦ based training system for minimally invasive surgery,¡¨ in Proc. Computer Assisted Radiology (CAR¡¦96), Paris, Jun.26-29, 1996, pp.764-769.
    [17] Kuhnapfel, U. G. and B. Neisius, ¡§CAD-based graphical computer simulation in endoscopic surgery,¡¨ Endoscopic Surgery and Allied Technologies, Vol.1, No.2, pp.181-184, 1993.
    [18] Lorensen, W. E. and H. E. Cline, ¡§Marching cubes: a high resolution 3D surface construction algorithm,¡¨ in Proc. SIGGRAPH¡¦87, Anaheim, CA, July 27-31, 1987, pp.163-169.
    [19] Mastin, G. A., P. A. Watterberg, and J. F. Mareda, ¡§Fourier synthesis of ocean scenes,¡¨ IEEE Computer Graphics and Applications, Vol. 7, No. 3, pp.16-23, 1987.
    [20] O¡¦Brien, J. F., and J. K. Hodgins, ¡§Dynamic simulation of splashing fluids,¡¨ in Proc. Computer Animation¡¦95, Geneva, Switzerland, Apr. 19-21, 1995, pp. 198-205.
    [21] Oppenheimer, P., A. Gupta, S. Weghorst, R. Sweet, J. Porter, ¡§The representation of blood flow in endourologic surgical simulations,¡¨ in Proc. MMVR2001, Newport Beach, CA, Jan.24-27, 2001, pp.365-371.
    [22] Osher, S. and J. A. Sethian, ¡§Fronts propagatin with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations,¡¨ Journal of Computational Physicas, Vol.79, pp.12-49, 1988.
    [23] Peachey, D. R., ¡§Modeling waves and surf,¡¨ in Proc. SIGGRAPH¡¦86, Dallas, Aug. 18-22, 1986, pp.65-74.
    [24] Reeves, W. T., ¡§Particle systems - a technique for modeling a class of fuzzy objects,¡¨ Computer Graphics, Vol.17, No.3, pp.359-376, 1983.
    [25] Schneider, J. and R. Westermann, ¡§Towards real-time visual simulation of water surfaces,¡¨ in Proc. VMV 2001, Stuttgart, Germany, Nov. 21-23, 2001, pp.211-218.
    [26] Sederberg, T. W. and S. R. Parry, ¡§Free-form deformation of solid geometric models,¡¨ in Proc. SIGGRAPH¡¦86, Vol.20, No.4, Dallas, TX, Aug.18-22, 1986, pp.151-160.
    [27] Shinya, M. and A. Fournier, ¡§Stochastic motion ¡V motion under the influence of wind,¡¨ in Proc. EUROGRAPHICS¡¦92, Cambridge, UK, Sep. 5-6, 1992, pp. 119-128.
    [28] Sims, K., ¡§Particle animation and rendering using data parallel computation,¡¨ Computer Graphics, Vol.24, No.4, pp.405-413, 1990.
    [29] Stam, J., ¡§Stable fluids,¡¨ in Proc. SIGGRAPH¡¦99, Los Angeles, CA, Aug.8-13, 1999, pp.121-128.
    [30] Stam, J., ¡§Stochastic dynamics: simulating the effects of turbulence on flexible structures,¡¨ in Proc. EUROGRAPHICS¡¦97, Budapest, Hungary, Sep. 4-8, 1997, pp.159-164.
    [31] Stam, J., and E. Fiume, ¡§Turbulent wind fields for gaseous phenomena,¡¨ in Proc. SIGGRAPH¡¦93, Anaheim, CA, Aug.2-6, 1993, pp.369-376.
    [32] Stam, J., ¡§A simple fluid solver based on the FFT,¡¨ Journal of Graphics Tools, Vol.6, No.2, pp.43-52, 2002.
    [33] Szeliski, R. and D. Tonnesen, ¡§Surface modeling with oriented particles,¡¨ in Proc. SIGGRAPH¡¦92, Chicago, July 26-31, 1992, pp.185-194.
    [34] Szeliski, R., D. Tonnesen, and D. Terzopoulos, ¡§Modeling surfaces of arbitrary topology with dynamic particles,¡¨ in Proc. 1993 IEEE Conf. Computer Vision and Pattern Recognition, New York, NY, Jun. 15-17, 1993, pp.82-87.
    [35] Taubin, G., ¡§A signal processing approach to fair surface design,¡¨ in Proc. SIGGRAPH¡¦95, Los Angeles, CA, Aug.6-11, 1995, pp.351-358.
    [36] Taubin, G., Optimal Surface Smoothing as Filter Design, Research Report, IBM Watson Research Center, Yorktown Heights, NY, March 1996.
    [37] Terzopoulos, D., J. Platt, A. Barr, and K. Fleischer, ¡§Elastically deformable models,¡¨ in Proc. SIGGRAPH¡¦87, Vol.21, No.4, Anaheim, CA, Jul.27-31, 1987, pp.205-214.
    [38] Tessendorf, J., Simulating Ocean Water, SIGGRAPH¡¦00: Course Notes 25: Simulating Nature: From Theory to Practice, New Orleans, Lousiana, Jul.23-28, 2000.
    [39] Tonnesen, D., ¡§Modeling liquids and solids using thermal particles,¡¨ in Proc. Graphics Interface'91, Calgary, Alberta, Jun. 3-7, 1991, pp.255-262.
    [40] Tonnesen, D., Dynamically Coupled Particle Systems for Geometric Modeling, Reconstruction, and Animation, Ph.D. dissertation, Computer Science Dept., Univ. of Toronto, Toronto, Canada, 1998.
    [41] Turner, J. A. and A. C. Mazzone, ¡§Multifluid finite volume Navier-Stokes solutions for realistic fluid animation,¡¨ in Proc. SIGGRAPH¡¦99 Programs: Animation & Special Effects: Sketches and Applications, Los Angeles, CA, Aug.8-13, 1999.
    [42] Weimer, H. and J. Warren, ¡§Subdivision schemes for fluid flow,¡¨ in Proc. SIGGRAPH¡¦99, Los Angeles, CA, Aug.8-13, 1999, pp.111-120.
    [43] Witkin, A., Particle System Dynamics, SIGGRAPH¡¦95 Course Notes: An Introduction to Physically Based Modeling, Los Angeles, CA, Aug.6-11, 1995.
    [44] Witting, P., ¡§Computational fluid dynamics in a traditional animation environment,¡¨ in Proc. SIGGRAPH¡¦99, Los Angeles, CA, Aug.8-13, 1999, pp.129-136.
    [45] Yngve, G., J. O¡¦Brien, and J. Hodgins, ¡§Animating explosions,¡¨ in Proc. SIGGRAPH¡¦00, New Orleans, Lousiana, Jul.23-28, 2000, pp.29-36.
    [46] Zhao, H.-K., S. Osher, and R. Fedkiw, ¡§Fast surface reconstruction using the level set method,¡¨ in Proc. IEEE Workshop on Variational and Level Set Methods in Computer Vision, Vancouver, BC, Canada, July 13, 2001, pp.194-201.
    Advisor
  • Din-Chang Tseng(´¿©w³¹)
  • Files
  • 89522033.pdf
  • approve immediately
    Date of Submission 2002-07-09

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.