Title page for 89521029


[Back to Results | New Search]

Student Number 89521029
Author Zhi-Wei Wang(王志偉)
Author's Email Address No Public.
Statistics This thesis had been viewed 2070 times. Download 0 times.
Department Electrical Engineering
Year 2001
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title A Large-signal Mode for E-PHEMT and It Application in Microwave Amplifier Design
Date of Defense 2002-06-17
Page Count 119
Keyword
  • Amplifier
  • E-PHEMT
  • GaAs
  • Large-signal model
  • Small-signal model
  • Abstract In this thesis,the device characteristics and device modeling technologies of enhancement-mode pHEMTs are investigated. Firstly, the device physics and non-linear characteristics of enhancement-mode pHEMTs are studied, including gain compression and harmoic distortion. By cold-FET measurement and Yang-Long dc measurement, the extrinsic elements of small-signal model can be estimated accurately. The other intrinsic parameters of small-signal can be determined based on the matrix transformation with the on wafer measured S-parameters.The intrinsic model elements, such as Cgs, Cgd, Cds, Rds, Gm,τ and Ri can be extracted under different Vds and Vgs bias points.
     In this study we propose a modified large-signal model for enhancement-mode pHEMTs, which is based on the conventional Curtice model. The modified large-signal model is based on the structure of Curtice model. In order to take the device non-linear behaviors into consideration, instead of using traditional junction capacitances (Cgs, Cgd), channel resistance (Ri), and output resistance (Rds), we propose suitable non-linear equations to describe these elements, which are the functions of Vgs and Vds. We also examine the accuracy of the large-signal model. Using scalable parasitic components attached to the modified large-signal model, a completed RF large-signal model covering various gate-widths can correctly predict the device’s dc and rf characteristics. Using thise model, a 2.4 GHz microwave amplifier was designed and tested.
    Table of Content 第一章 緒論
    §1.1 研究動機…………………………………………………………...1
    §1.2 論文架構…………………………………………………………...3
    第二章 異質結構高速移導率場效電晶體元件特性探討與量測分析
    §2.1 簡介………………………………………………………….……..5
    §2.2 高速移導率場效電晶體工作原理………………………………..5
    §2.3 非線性效應……………………………………………………….11
      §2.3.1 弱非線性效應……………………………………………..11
      §2.3.2 強非線性效應……………………………………………..18
      §2.3.3 鄰近通道功率比例………………………………………..24
    §2.4 元件量測結果與討論……………………………………………26
      §2.4.1 直流及高頻量測結果…………………………………….26
      §2.4.2 強非線性效應下的功率特性…………………………….32
    §2.5 結語……………………………………………………………….39
    第三章 增強型異質結構高速移導率電晶體小訊號模型建立
    §3.1 簡介……………………………………………………………….40
    §3.2 理論分析………………………………………………………….40
    §3.3 外部寄生元件參數的決定………………………………………42
      §3.3.1 源極電阻的萃取………………………………………….42
      §3.3.2 Cold FET量測萃取外部元件參數………………………..43
    §3.4 內部本質元件的決定……………………………………………47
    §3.5 萃取結果討論……………………………………………………51
    §3.6 線性模型的尺寸法則……………………………………………62
    §3.7 不同溫度下的小信號模型………………………………………65
    §3.8 結語………………………………………………………………68
    第四章 增強型異質結構高速移導率電晶體大訊號模型建立
    §4.1 簡介………………………………………………………………69
    §4.2 大訊號模型介紹…………………………………………………69
    §4.3 大訊號模型的萃取方法與流程…………………………………71
      §4.3.1 電流電壓方程式…………………………………………...71
      §4.3.2 電容與電阻非線性方程式………………………………...74
    §4.4 模擬結果與討論…………………………………………………78
      §4.4.1 小訊號S參數模擬………………………………………..78
      §4.4.2 高頻功率特性模擬………………………………………..79
      §4.4.3 非線性特性模擬…………………………………………..84
    §4.5 大信號模型的尺寸法則………………………………………...90
      §4.5.1 尺寸法則分析……………………………………………..90
      §4.5.2 Scaleable大信號模型………………………………………91
    §4.6 結語………………………………………………………………95
    第五章 2.4 GHz微波放大器IC之設計
    §5.1 簡介………………………………………………………………96
    §5.2 電路設計…………………………………………………………96
    §5.3 電路量測結果與分析……………………………………………99
    §5.4 結語……………………………………………………………...102
    第六章 結論………………………………………………………..103
    參考文獻…………………………………………………………….104
    附錄
    附錄A 2.4GHz可變增益放大器
      簡介……………………………………………………………..….1
    附錄B 發表於2002年RF IC Symposium的文章………..…..9
    Reference [1] R. Dingle, H. L. Stormer, A.C. Gossard and W. Wiexmann, Appl.  Phys., Vol.33, p665-667,1978
    [2] T.Mimura, S. Hiyamizu, T. Fujii and K. Nanbu, Jan. J. Appl. Phys., Vol. 19 L225-L227,1980.
    [3] K. Hirakawa, H. Sasaki, and J. Yoshion, Appl. Phys. Lett., Vol. 45, p253 1984   
    [4] J. W. Matthews and A.E. Blakesless, J. Chystal Growth, Vol. 27, p. 118,1974.
    [5] S. M. Sze, “High-speed semiconductor devices”, John Wiley, 1990.
    [6] Y. Bito, N. Iwata, and M. Tomita, “64% efficiency enhancement- mode power heterojunction FET for 3.5 V Li-ion battery operated personal digital cellular phones,” in Proc. IEEE Microwave Theory Techniques Dig., 1998, pp. 439–442.
    [7] Y. Bito and N. Iwata, “Highly efficient enhancement-mode power heterojunction FET with multilayer cap and doped recess structure for 3.5 V digital cellular phones,” IEEE Electron Device Lett., vol. 20, pp. 158–160, Apr. 1999.
    [8] S. C. Cripps, RF Power Amplifiers for Wireless Communication”, Artech House, 1998.
    [9] Youngoo Yang and Bumman Kim, “A New Linear Amplifier Using Low-frequency Second Order Intermodulation Component Feedforwarding”, IEEE Microwave and Guide Wave Letters, Vol.9, No.10, October 1999.
    [10] N. Suematsu, Y. Iyama and O. Ishida,” Transfer Characteristics of IM3 Relative Phase of a GaAs FET Amplifier”, IEEE Transaction on Microwave Theory and techniques, Vol. 45, No. 12, Dec. 1997, pp2509-2514.
    [11] S. A. Maas, “Volterra analysis of spectral regrowth,” IEEE Microwave Guided Wave Lett., vol. 7, no. 7, pp. 192-193, 1997.
    [12] 陳健維,“功率電晶體的增益壓縮機制、功率飽和機制以及線性度”, 國立中興大學電機工程研究所論文,民國87年。
    [13] G. Dambrine et all, “A new method to determining the FET small- signal circuit” IEEE Trans. Microwave Theory Tech., vol. 36 no. 7, pp. 1151, 1988.
    [14] L. Yang et.all, “New method to measure source and drain resistance of the GaAs MESFET Model” IEEE Electron Device Lett., vol. EDL-7, pp. 75-77, 1986.
    [15] W. Curtice et all, “A nonlinear GaAs FET model for uses in the design of output circuit for power amplifiers” IEEE Trans. Microwave Theory Tech., vol. MTT-33 no. 12, pp. 183, 1985.
    [16] Manfred Berroth and Roland Bosch, "Broad-Band Determination of the FET Small-Signal Equivalent Circuit," IEEE Trans. Microwave Theory & Technology, Vol. 38, no. 7, July, 1990
    [17] J. M. Golio, M. G. Miller, G. N. Maracas, and D.A. Johnson, “Frequency-dependent electrical characteristics of GaAs MESFETs,” IEEE Trans. Microwave Theory Tech, vol.49, no.12 pp. 2413–2420, December 2001.
    [18] J. Rodriguez-Tellez, B. P. Stothard, and M. AL-Daas, “static, pulsed and frequency-dependent IV characteristics of GaAs FETs,” Proc. Inst. Elec. Eng., pt. G, vol. 143, pp. 129-133, June 1996
    [19] Agilent-ADS EEHEMT1 Model Menu.
    [20] Sebastien Nuttinck, Edward Gebara, Joy Lasker, and Herbert M. Harries, “Study of Self-Heating Effects, Temperature-Dependent Modeling, and Pulsed Load-Pull Measurements”, IEEE Trans. Microwave Theory Tech., vol. MTT-33 no. 12, pp. 183, 1985.
    [21] H. Statz. et. all, “GaAs FET device and circuit simulation in SPICE” IEEE Electron Device Lett., vol. EDL-34, pp. 160-166, 1987
    [22] I. Angelov et. all, “A New Empirical Nonlinear model for HEMT and MESFET devices” IEEE Trans. Microwave Theory Tech., vol. 40 no. 12, pp. 2258-2266, 1992.
    [23] T. B. Nishmura, N. Iwata, K. Yamaguchi, K. Takemura and Y. Miyasaka “3.5V operation driver-amplifier MMIC utilizing SrTiO3 capacitors for 1.95GHz wide-band CDMA cellular phones”, IEEE MTT-S Int. Microwave Symp. Dig, (Baltimore, MA), pp. 447-450, June 1998.
    [24] Shey-Shi Lu, Chin-chun Meng, To-Wei Chen and Hsiao-Chin Chen “The Origin of the Kink Phenomenon of Transistor Scattering Parameter S22” IEEE Trans. Microwave Theory Tech, vol.49, no.2 pp. 333–340, February 2001.
    Advisor
  • Yi-Jen Chan(詹益仁)
  • Files
  • 89521029.pdf
  • disapprove authorization
    Date of Submission 2002-07-04

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.