Title page for 89426010


[Back to Results | New Search]

Student Number 89426010
Author Cheng-Han Du(杜政翰)
Author's Email Address s9426010@cc.ncu.edu.tw
Statistics This thesis had been viewed 2746 times. Download 1860 times.
Department Graduate Institute of Industrial Management
Year 2001
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title 顧客需求不確定下接單生產環境中單一產品BOM內各品項之生產規劃決策問題
Date of Defense 2002-06-28
Page Count 88
Keyword
  • Benders Decomposition
  • BOM
  • MTO
  • MTS
  • Two-Stage Stochastic Linear Programming
  • Abstract 本論文旨在解決不確定需求下,接單生產環境中,單一種產品之BOM(Bill of Material)內各品項之生產規劃策略,目標值為極小化總成本。柯瓊琍(2001)論文已針對接單生產環境中,需求之時點和數量為已知下,發展出單一產品固定BOM中各品項之生產決策問題(MTS/MTO)之整數規劃模型。其問題中給定一個BOM,以一分割線(Partition Line;PTL)將整個BOM切割為二部分,PTL以下之品項以計劃式生產(MTS);PTL以上之品項則以接單式生產(MTO),目的為求得最小化成本下BOM內各項生產規劃方式及生產製造時間和數量。本研究將延伸其研究,主要為將顧客需求假設為不確定。
    為表現需求不確定的問題,本論文首先發展一二階段隨機線性規劃模型(Two-Stage Stochastic Linear Programming Model),並且以離散(discrete)、有限(finite)的機率分配來呈現需求之不確定性。模型中同時考慮MTO/MTS決策不同時的生產成本、存貨成本和缺貨成本,目的為找到BOM內各品項之最佳生產規劃方式,及MTS品項之最佳生產數量,期望能有效防止不確定需求對決策造成重大衝擊。
    本研究用以求解二階段隨機線性規劃問題之解法為最常用以求解二階段隨機線性規劃之Benders Decomposition,並利用AMPL軟体來完成本研究之電腦計算求解。
    Table of Content 目錄
    目錄i
    圖目錄iii
    表目錄iv
    第一章 緒論1
    1.1 研究背景與動機1
    1.2 問題敘述2
    1.3 研究目的3
    1.4 研究方法及進行步驟3
    1.4.1 研究方法3
    1.4.2 進行步驟5
    第二章 文獻探討6
    2.1 隨機線性規劃問題之分類(Classes of SLP Problems)6
    2.1.1 Distribution Problems8
    2.1.2 Stochastic Programming Problems with Recourse9
    2.1.3 Chance-Constrained Problems12
    2.1.4 Stochastic Measures in SP Recourse Problems:EVPI and VSS12
    2.2 二階段隨機線性規劃(Two-Stage Stochastic Linear Programming)13
    2.3 Benders Decomposition15
    2.3.1 Benders Decomposition Algorithm19
    第三章 二階段隨機線性規劃模型(Two-Stage SLP Model)21
    3.1 環境假設與問題特性21
    3.1.1 環境假設21
    3.1.2 問題特性22
    3.2 符號定義與二階段隨機線性規劃之建立23
    3.2.1 符號定義23
    3.2.2 二階段隨機規劃模型之建立24
    3.3 Benders Decomposition Algorithm28
    3.3.1 Benders Decomposition (multicut version)求解步驟28
    3.4 釋例31
    3.4.1 釋例個案描述31
    3.4.2 Benders Decomposition求解釋例個案問題32
    第四章 數值分析34
    4.1 極端參數值測試34
    4.2 不同問題規模測試40
    4.3 集群BOM測試42
    4.3.1 集群原則及各集群項參數之決定43
    4.3.2 釋例說明集群之程序及求解結果43
    4.3.3 集群方式分析45
    第五章 結論47
    5.1 研究貢獻48
    5.2 研究限制48
    5.3 未來研究方向49
    參考文獻50
    附錄A:釋例個案之AMPL程式53
    附錄B:釋例個案求解結果59
    附錄C:極端參數值測試各CASE求解結果63
    附錄D:集群釋例個案之參數73
    附錄E:集群前後之BOM求解結果(目標值相同)77
    附錄F:集群前後目標值不同之個案參數86
    Reference 參考文獻
    黃世銘, “物流中心轉運量可擴充及顧客需求為隨機性假設下之多種貨品儲運分配系統設計”, 國防管理學院後勤管理研究碩士論文, 2000。
    尹岳川, “在顧客需求為隨機性假設下多種貨品生產與儲運分配系統設計”, 國防管理學院後勤管理研究碩士論文, 2001。
    柯瓊琍, “訂單生產環境下之BOM內各品項生產規劃之決策問題”, 國立中央大學工業管理研究碩士論文, 2001。
    Benders, J.F. (1962), “Partitioning Procedures for Solving Mixed-Variable Programming Problems”, Numerische Mathematik 4, pp238-252
    Birge, R. J. (1995), “Current Trends in Stochastic Programming Computation and Applications”, Department of Industrial and Operation Engineering, University of Michigan Ann Arbor, Michigan 48109-2117.
    Birge, R.J. and Louveaux, F. (1997), “Introduction to Stochastic Programming”, Springer-Verlag NY.
    Carøe, C.C. and Tind, J.(1997), “A Cutting-Plane Approach to Mixed 0-1 Stochastic Integer Programs”, European Journal of Operational Research 101, pp306-316.
    Carøe, C.C. and Tind, J.(1998), “L-shaped Decomposition of Two-Stage Stochastic Programs with Integer Recourse”, Mathematical Programming 83, pp451-464.
    Carøe, C.C. and Schultz, R.(1999), “Dual Decomposition in Stochastic Integer Programming”, Operation Research Letters 24, pp37-45.
    Charnes, A., and Cooper, A.A. (1959), “Chance Constrained Programming”, Management Science 6, pp73-79.
    Cheung, R.K.-M. and Powell, W.B.(1996), “Models and Algorithms for Distribution Problems with Uncertain Demands”, Transportation Science 30, pp43-59,
    Dantzig, G. B. and Infanger, G. (1995), “A Probabilistic Lower Bound for Two-Stage Stochastic Programs”, Technical Report SOL 95-6, Department of Operations Research, Stanford University, Stanford, CA.
    Fourer, R., Gay, D.M, and Kernighan, B. W. (1993), “A Modeling Language for Mathematical Programming”, Boyd and Fraser, Ferncroft Village, Danvers, MA.
    Fragnière, E. , Gondzio, J. ,and Vial, Jean-Philippe(1998), “ A Planning Model with one Million Scenarios Solved on an Affordable Parallel Machine”, Logilab Technical Report 1998.11, Logilab, HEC, Section of Management Studies, University of Geneva, http://ecolu-info.unige.ch/~logilab/
     
    Geoffrion, A. H.,(1970), “Elements of Large-Scale Mathematical Programming”, Management Science 16, pp652-685.
    Geoffrion, A. H. and Graves G. W.(1974), “Multicommodity Distribution System Design by Benders Decompositioln”, Management Science 20, pp822-845.
    Gassmann, H.I. (1996), “On the formulation of stochastic linear programs using algebraic modeling languages”, Annals of Operations Research 64, pp83-112.
    Gupta, A. and Maranas C.D.(2000), “A Two-Stage Modeling and Solution Framework for Multisite Midterm Planning under Demand Uncertainty”, Ind. Eng. Chem. Res. 39, pp3799-3813.
    Heragu, S. S., and Chen, Ja-Shen(1998), “Optimal Solution of cellular Manufacturing System Design: Benders’ Decomposition approach”, European Journal of Operation Research 107, pp175-192.
    Infanger, G. (1994), “Planning under Uncertainty: Solving Large-Scale Stochastic Linear Programs”, Boyd and Fraser, Ferncroft Village, Danvers, MA.
    Kall, P. and Wallace, S. W. (1994), “Stochastic Programming”, John Wiley &Sons, Chichester, England.
    Laporte, G. and Louveaux, V. F. (1993), “The Integer L-shaped Method for Stochastic Integer Programs with Complete Recourse”, Operations Research Letters 13, PP133-142.
    Prékopa, A. (1995), “Stochastic Programming”, Kluwer, Dordrecht, The Netherlands.
    Schweitzer, E.(1994), “Multi-Stage Mathematical Programming under Uncertainty”, Research Thesis.
    Subranhmanyam, S., Pekny, J.F., and Reklaitis, G.V.(1994), “Design of Batch Chemical Plants under Market Uncertainty”, Ind. Eng. Chem. Res. 33, pp2688-2701.
    Valente, P., Mitra, G., Poojari, C., and Kyriakis, K. (2001), “Software tools of Stochastic Programming: A Stochastic Programming Integrated Environment (SPInE)”, Department of Mathematical Sciences, Brunel University, Uxbridge, UB8 3PH.
    Van Slyke, R.M., and Wets, R.J.-B. (1996), “L-Shaped Linear Programs with Applications to Optimal Control and Stochastic Programming”, SIAM Journal on Applied Mathematics 17, pp638-663.
    Wollmer, R.D.(1980), “Two Stage Linear Programming under Uncertainty with 0-1 Integer First Stage Variables”, Mathematical Programming 19, pp279-288.
    Advisor
  • Gwo-Ji Sheen(沈國基)
  • Files
  • 89426010.pdf
  • approve immediately
    Date of Submission 2002-07-08

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.