Title page for 89323070


[Back to Results | New Search]

Student Number 89323070
Author Tze-Chern Mao(毛之成)
Author's Email Address No Public.
Statistics This thesis had been viewed 1861 times. Download 1078 times.
Department Mechanical Engineering
Year 2005
Semester 2
Degree Ph.D.
Type of Document Doctoral Dissertation
Language zh-TW.Big5 Chinese
Title 釔鐵柘榴石與雜質的添加對於以LHPG法生長晶纖之研究
Date of Defense 2006-07-05
Page Count 122
Keyword
  • YIG
  • Abstract Yttrium iron garnet (Y3Fe5O12, YIG) single crystal is widely used in magneto-optical applications in fiber-optical communication systems and magnetic field sensors, both because of its large Faraday rotation and because it is highly transparent in the near-infrared region.?However, growing YIG single-crystals is difficult because of the incongruent melting of the compound and the unsteady oscillatory molten zone. In this study, YIG single-crystal fibers were grown by LHPG method. Based on the experimental results show that YIG single-crystal fibers could be directly grown at the stable freezing interface when the melt had a composition of 78 ~ 87 mole % Fe2O3. When the seed’s Fe2O3 concentration was below 78 mole %, the YFeO3 would crystallize out until the composition of the melt increased along the liquidus curve until it needed a concentration of 78 mole % Fe2O3 or higher, whereupon YIG started to crystallize from the liquid. In addition, YIG single-crystal fibers with the desired crystallographic orientation could only be obtained using a two-pass method.
    CeO2 was added into YIG materials to increase the quantitative Faraday rotation of YIG. With the floating zone method, there were two essential conditions for growing a single crystal fiber of YIG: the degree of sintering of the feed rod and the growth rate. From our study, it can be seen that Ce:YIG ceramic with the necessary densification could be fabricated using a lower sintering temperature than that required for pure YIG ceramic. Moreover, the greater the amount of CeO2 added, the slower the pulling rate needed to grow good quality single crystal fibers. When a faster pulling rate is used to grow Ce:YIG material, a more significant amount of foreign phase and cellular structures will form in the core region than in the peripheral region of the grown crystal fibers.
    Table of Content 中文摘要I
    AbstractII
    致謝IV
    目錄IIV
    表目錄VII
    圖目錄VIII
    符號說明XII
    第一章 緒論1
    1.1 研究背景2
    1.2 材料介紹4
    1.3 相關研究6
    1.3.1 釔鐵柘榴石6
    1.3.2摻鈰釔鐵柘榴石9
    1.4 研究動機11
    1.5 研究目的13
    1.6 研究方法14
    圖表   15
    第二章 材料製程與實驗方法23
    2.1粉末的調配23
    2.2陶瓷材料棒的製作24
    2.3 晶纖生長25
    2.3.1 二氧化碳雷射加熱系統26
    2.3.2 光學轉換系統26
    2.3.3 長晶機台26
    2.3.4 紅外線熱影像儀27
    2.3.5 晶纖生長方式27
    2.4 晶體後續檢測28
    圖   31
    第三章 YIG晶纖在LHPG系統下的生長機制35
    3.1自我調適行為35
    3.2陶瓷晶種孔隙對晶纖生長之影響40
    3.3控制YIG晶纖的生長方向42
    3.4本章結論43
    圖表   45
    第四章 鈰摻雜對陶瓷製程的影響61
    4.1 溫度對陶瓷燒結之影響61
    4.2 Ce:YIG陶瓷的密度與燒結溫度關係63
    4.3 Ce:YIG陶瓷的成分與微結構64
    4.4 Ce:YIG陶瓷的磁性檢測66
    4.5 本章結論69
    圖表   70
    第五章 鈰摻雜對晶纖生長的影響87
    5.1 YIG熔區的震盪對晶纖生長的影響87
    5.2 拉晶速度對Ce:YIG晶纖生長的影響89
    5.3 Ce:YIG晶纖生長的熔區振盪與胞狀結構的觀測91
    5.4 晶體檢測93
    5.5 本章結論95
    圖表   97
    第六章 總結論113
    參考文獻115
    Reference [1] X. W. Zhang, S. Y. Zhang and G. R. Han, “Growth and characterization of magneto-optical single-crystal ReYbBiIG with temperature-stabilized Faraday rotation”, J. Magn. Magn. Mater., Vol. 246, pp. 67-72 (2002).
    [2] M. Kurimoto, S. Matsubayashi, K. Ando, T. Saito and T. Tsushima, “Temperature dependence of the Faraday effect in Rh4+-substituted magnetic garnets”, J. Appl. Physi., Vol. 83, pp. 4897-4901 (1998).
    [3] K. Shinagawa, E. Tobita, T. Saito and T. Tsushima, “Faraday effect in(Pb2+, Th4+)-substituted magnetic garnets”, J. Magn. Magn. Mater., Vol. 171-181, pp. 251-252 (1998).
    [4] M. N. Deeter, S. Milian, G. W. Day, G. Diercks and S. Samuelson, “Novel bulk iron garnets for magneto-optic magnetic field sensing”, IEEE Trans. Magn., Vol. 30, pp. 4464-4466 (1994).
    [5] T. Sekijima, H. Kishimoto, T. Fujii, K. Wakino and M. Okata, “Magnetic, optical and microwave properties of rare-earth-substituted fiberous yttrium iron garnet single crystals grown by floating zone method”, Jpn. J. Appl. Phys., Vol. 38, pp.5874 (1999).
    [6] C. Leycuras, H. Le Gall, M. Desvignes, M. Guillot and A. Marchand, “Magneto-optic and magnetic properties of praseodymium substituted garnets”, J. Appl. Phys., Vol. 53, pp. 8181-8183 (1982)
    [7] Von Aulock, Wilhelm H, “Garnet”, Handbook of Microwave ferrite Materials, Sec. 2, pp.65, (1965).
    [8] 余樹楨,晶體之結構與性質,ch.10 空間群對稱,p.171,渤海堂文化事業有限公司,中華民國八十五年十一月一版四刷。
    [9] C. Y. Tsay, C. Y. Liu, K. S. Liu, I. N. Lin, L. J. Hu and T. S. Yeh, “Low temperature sintering of microwave magnetic garnet materials”, Mater. Chem. Phys., Vol.79, pp.138-142 (2003).
    [10] Deltronic Crystal Industries, INC.
    [11] 近角聰信,鐵磁性物理,ch 9 亞鐵磁氧化物的磁性,p172,廣州大學出版社,2002年7月第一版。
    [12] 胡朝彰,雷射加熱提拉法生長釔鐵柘榴石晶纖之研究,國立中央大學機械工程研究所博士論文,民國92年。
    [13] N. P. Padture and G. Klemens, “ Low thermal conductivity in garnet”, J. Am. Ceram. Soc. Vol.80, pp.1018-1020 (1997).
    [14] J. W. Nielsen and E. F. Dearborn, “The growth of single crystals of magnetic garnets”, J. Phys. Chem. Solids., Vol.5, pp.202 (1958).
    [15] H. J. Van Hook, “Phase relation in the ternary system Fe2O3-FeO-YFeO3”, J. Am. Ceram. Soc., Vol.45, pp.162 (1962).
    [16] S. Kimura and I. Shindo, “Single crystal growth of YIG by the floating zone method”, J. Cryst. Growth., Vol. 41, pp. 192 (1977).
    [17] S. Kimura, I. Shindo, K. Kitamura and Y. Mori, “Evaluation of yttrium iron garnet single crystals grown by the floating zone method”, J. Cryst. Growth., Vol.44, pp.621 (1978).
    [18] S. Kimura, K. Kitamura and I. Shindo, “Growth of rare earth garnet crystals by the floating zone method”, J. Cryst. Growth., Vol.65, pp.543 (1983).
    [19] S. Kimura and K. Kitamura, “Floating zone crystal growth and phaseequilibria: a review”, J. Am. Ceram. Soc., Vol.75, pp.1440(1992).
    [20] C. H. Chun, “Experiments on steady and oscillatory temperature distribution in a floating zone due to the Maragoni convection”, Acta Astronaut., Vol. 7, pp.479 (1980).
    [21] 黃禎宏,YIG非穩態熱流場研究及晶纖生長,國立中央大學機械工程研究所碩士論文,民國86年。
    [22] T. Sekijima, H. Satoh, K. Tahara, T. Fujii, K. Wakino and M. Okada, “Growth of fibrous YIG single crystals by the self-adjusting solvent FZ method”, J. Cryst. Growth., Vol. 193, pp. 446 (1998).
    [23] E. Kaldis, Crystal Growth of Electronic Materials, North-Holland, Amsterdam, 1985, ch. 11, p. 127.
    [24] K. Nagashio, K. Kuribayashi and Y. Takamura, “Direct crystallization of Y3Fe5O12 garnet by containerless solidification processing”, Materials Transactions, Vol. 42, pp. 233-237 (2001).
    [25] K. Nagashio and K. Kuribayashi, “Phase selection in the undercooled peritectic Y3Fe5O12 melt”, Acta Materialia, Vol. 50, pp. 1973-1981 (2002).
    [26] C. Y. Tsay, C. Y. Liu, K. S. Liu, I. N. Lin, L. J. Hu and T. S. Yeh , J. Magn. Magn. Mater., Vol. 239, pp.490 (2002).
    [27] K. A. Wickersheim and R.A. Buchanan, “Optical studies of exchange in substituted garnets”, J. Appl. Physi., Vol. 38, pp.1048-1049 (1967).
    [28] C. Leycuras, H. L. Gall, J. M. Desvignes, M. Guillot and A Marchand, “Magnetic and magnetoptical properties of a cerium YIG single crystal”, IEEE Trans. Magn., VOL. MAG-21, pp.1660-1662 (1985).
    [29] M. Kucera, J. Bok and K.Nitsch, “Faraday rotation and MCD in Ce doped YIG”, Solid State Commun., Vol. 69, pp.1117-1121 (1989).
    [30] M. Gomi, H. Furuyama and M.Abe, “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering”, J. Appl. Physi., Vol. 70, pp.7065-7067 (1991).
    [31] G. J. Diercks, Jr and S. Samuelson, “Magneto-optical properties Y3-x-yCexLayFe5O12”, IEEE Trans. Magn., Vol. 31, No. 6, pp.3328-3330 (1995).
    [32] T. Sekijima, H. Kishimoto, T. Fujii, K. Wakino and M. Okata, “Magnetic, optical and microwave properties of rare-earth-substituted fiberous yttrium iron garnet single crystals grown by floating zone method”, Jpn. J. Appl. Phys., Vol. 38, pp.5874-5878 (1999).
    [33] S. Higuchi, Y. Furukawa, S. Takekawa, O. Kamada and K. Kitamura, “Magneto-optical properties of cerium substituted yttrium iron garnet single crystals grown bt traveling solvent floating zone method”, Jpn. J. Appl. Phys., Vol. 38, pp. 4122-4126 (1999).
    [34] T. Sekijima, T. Funakoshi, K. Katabe, K. Tahara and T Fujii, “Growth and optical properties of Ce-substituted fiberous YIG single crystals”, Jpn. J. Appl. Phys., Vol. 37, pp.4854-4857 (1998).
    [35] T. Sekijima, T. Fujii and K. Wakion, “Optical Faraday rotator using Ce-substituted fiberous YIG single crystal grown by floating-zone method with YAG laser heating”, IEEE trans. Microwave Theor. Tech., Vol. 47, pp.2294-2298 (1999).
    [36] T. Sekijima, H. Itoh, T. Fujii, K.Wakino and M. Okada, “Influence of growth atmosphere on solubility limit of Ce3+ ions in Ce-substituted fiberous yttrium iron garnet single crystals”, J. Cryst. Growth., Vol.229, pp.409-414 (2001).
    [37] M. –B. Park and N. –H. Cho, “Structural and magnetic characteristics of yttrium iron garnet (YIG, Ce:YIG) films prepared by RF magnetron sputter techniques”, J. Magn. Magn. Mater., Vol. 231, pp.253-264 (2001).
    [38] S. Mino, A. Tate, T. Uno, T. Shintaku and A. Shibukawa, “structure and lattice of Ce-substituted yttrium iron garnet films prepared by RF sputtering”, Jpn. J. Appl. Phys., Vol. 32, pp.3154-3159 (1993).
    [39] O. Kamada, and Sadao, “Magnetic field sensors using Ce:YIG single crystals as a Faraday element”, IEEE Transactions on Magnetics, Vol.37, pp.2013-2015 (2001).
    [40] W. A. Tiller, K. A. Jackson, J. W. Rutter and B. Chalmers, “The redistribution of solute atoms during the solidification of metals”, Acta Metall., Vol. 1 pp.428-437 (1953).
    [41] P. Grosseau, A. Bachiorrini and B. Guilhot, “Preparation of Polycrystalline Yttrium-Iron-Garnet Ceramics”, Powder Tech., Vol. 93, pp. 247-251 (1997).
    [42] C. Y. Tsay, C. Y. Liu, K. S. Liu, I-N. Lin, L. J. Hu, T. S. Yeh, “Low temperature sintering of microwave magnetic garnet materials”, J. Magn. Magn. Mater., Vol. 239, pp. 490-494 (2002).
    [43] W. Tolksdorf, B. Strocka and F. Welz, “Growth of seeded and unseeded yttrium garnet crystals from high temperature solutions studied by induced striations”, J. Cryst. Growth., Vol 65, pp. 549 -555 (1983).
    [44] M. F. Lazarescu, A. S. Manea and E. Elena, “The influence of the melt cooling rate on the properties of YIG single crystal grown by the flux method from sintered polycrystalline material”, Cryst. Res. Technol., Vol.29, pp.889 (1994).
    [45] H. J. Lim, R. C. DeMattei, R. S. Feigelson and K. Rochford, “Striation in YIG fibers grown by the laser-heated pedestal method”, J. Cryst. Growth., Vol. 212, pp. 191-203 (2000).
    [46] L. K. Shick, J. W. Nielsen, A. H. Bobeck, A. J. Kurtzig, P. C. Michaelis and J. P. Reekstein, “Liquid phase epitaxial growth of uniaxial garnet films: circuit deposition and bubble propagation”, Appl. Phys. Lett. Vol.18, pp.89-91 (1971).
    [47] J. C. Chen and C. C. Hu, “Quantitative analysis of YIG, YFeO3 and Fe3O4 in LHPG-grown YIG rods”, J. Cryst. Growth., Vol. 249, pp. 245-250 (2003).
    [48] R. S. Feigelson, in: Crystal Growth of Electronic Materials, Ed. E. Kaldis (North-Holland, Amsterdam, 1985) ch. 11, p. 127.
    [49] C. C. Hu, J. C. Chen and C. H. Huang, “Effect of pulling rates on the quality of YIG single crystal fibers”, J. Cryst. Growth., Vol. 225, pp. 257-263 (2001).
    [50] J. C. Chen, L. T. Liu and C. C. Young, “Study of the growth mechanism of BSO during a LHPG method”, J. Cryst. Growth., Vol. 198/199, pp. 476-481 (1999).
    [51] 楊榮中, “柘榴石之反應結研究:緻密化與微觀結構之探討” 清華大學材料科學工程研究所博士論文 (1990)。
    [52] B. Strocka, P. Holst and W. Tolksdorf, “An empirical formula for the calculation of lattice constants of oxide garnets based on substituted yttrium-and gadolinium-iron garnets”. Philips J. Res., Vol. 33, pp. 186-203 (1978).
    [53] J. S. Kum, S. J. Kim, In- Shim, C. S. Kim, “Magnetic properties and Mössbauer studies of Y3-xCexFe5O12 (x = 0.00, 0.01 and 0.3) fabricated using a sol-gel method”, IEEE Trans. Magn., Vol. 39, pp. 3118 -3120 (2003).
    [54] G. J. Diercks, Jr., S. Samuelson, “Magneto-optical properties of Y3-x-yCexLayFe5O12”, IEEE Trans. Magn., Vol. 31, pp. 3328-3330 (1995).
    [55] A. Globus, M. Guyot, “Wall displacement and bulging in magnetization mechanisms of the hysteresis loop”, Phys. Stat. Sol. (B), Vol. 52, pp. 431 (1972).
    [56] P. Vaqueiro, M. A. López-Quintela, J. Rivas, J. M. Greneche, “Annealing dependence of magnetic properties in nanostructured particles of yttrium iron garnet prepared by citrate gel process”, J. Magn. Magn. Mater., Vol. 169, pp. 56-58 (1997).
    [57] R. D. Sánchez, J. Rivas, P. Vaqueiro, M. A. López-Quintela, D. Caeiro, “Particle size effects on magnetic properties of yttrium iron garnets prepared by sol-gel method”, J. Magn. Magn. Mater., Vol. 247, pp. 92-98 (2002).
    [58] Y. K. Chang, J. Cryst. “The float-zone growth of Ti3Au and Ti3Pt”, J. Cryst. Growth., Vol. 62, pp. 627-632 (1983).
    [59] M. Jurisch and W. Löser, “Analysis of periodic non-rotational w striations in Mo single crystals due to nonsteady thermocapillary convection”, J. Cryst. Growth., Vol. 102, pp. 214-222 (1990).
    [60] Ch. –H. Chun, “Marangoni convection in a floating zone under reduced gravity”, J. Cryst. Growth., Vol. 48, pp. 600-610 (1980).
    [61] G. Müller, “Convective instabilities in melt growth configurations”, J. Cryst. Growth., Vol. 128, pp. 26-36 (1993).
    [62] B. W. Delf, A. Green and R. J. Stevens, “Sputtering of yttrium iron garnet (YIG) thin films from a powder mixture of Fe2O3 and Y2O3”, Phys. Stat. Sol. (a), Vol.13, pp.493-498 (1972).
    [63] C. E. Chang and W. R. Wilcox, “Inhomogeneities due to thermocapillary flow in floating zone melting”, J. Cryst. Growth., Vol. 28, pp. 8-12 (1975).
    [64] C. E. Chang and W. R. Wilcox, Int. J. Heat Mass Transfer., “Analysis of surface tension driven flow in floating zone melting”, Vol. 19, pp. 355-366 (1976).
    [65] M. Gomi, H. Furuyama and M. Abe, J. Appl. Phys., “Strong magneto-optical enhancement in highly Ce-substituted iron garnet films prepared by sputtering”, Vol. 70, pp. 7065-7067 (1991).
    [66] M. Gomi, K. Satoh and M. Abe, Jpn. J. Appl. Phys., “Giant faraday rotation of Ce-substituted YIG films expitaxially grown by RF sputtering”, Vol. 27, pp. L1536-L1538 (1988).
    Advisor
  • Jyh-Chen Chen(陳志臣)
  • Files
  • 89323070.pdf
  • approve immediately
    Date of Submission 2006-07-19

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.