Title page for 89322079


[Back to Results | New Search]

Student Number 89322079
Author Shu-Jung Yang(楊樹榮)
Author's Email Address s9322079@cc.ncu.edu.tw
Statistics This thesis had been viewed 3996 times. Download 2012 times.
Department Civil Engineering
Year 2001
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title The resilient and plastic behavior of subgrade soils under repeated loading and its model development.
Date of Defense 2002-06-17
Page Count 178
Keyword
  • plastic model
  • repeated loading
  • resilient modulus
  • shakedown
  • subgrade soils
  • Abstract ABSTRACT
       The subgrade soil failures due to excessive permanent deformation produced by high stresses in the pavement. However, lack of reasonable mode distinguishes the critical stress in subgrade soil. This paper describes the shakedown behavior of cohesive subgrade soil under repeated loading. The main goal is to define the critical stress level of subgrade soil under repeated loading. According to the shakedown concept, this level is termed the shakedown limit, and it can be distinguish on bases of resilient, plastic, hysteretic, and shakedown behavior by repeated triaxial test. Besides, to select the deviatoric stress model and bilinear model predict the resilient modulus of subgrade soil.
       The test results show the bilinear model is better than the deviatoric stress model. The determination of critical stress can rely on the behavior of soil under repeated loading, such as dissipated energy and the type of plastic strain accumulation. Below the critical stress, the plastic strain is steady to accumulate, and the dissipated energy is more and more small as the number of load cycles increase. As the stress level advancing above the critical stress, the plastic strain is suddenly increases, and the dissipated energy rises again after specific load applications. Besides, the method of description for plastic strain rate versus plastic strain also can effectively distinguish the shakedown behavior.
       According to the shakedown concept, subgrade soil is from plastic creep shakedown to incremental collapse. The critical stress level is between two behaviors, and it decreases with increasing water content, increases with increasing confining pressure.
    Table of Content 目 錄
    頁次
    第一章 緒論1
    1.1研究動機與目的1
    1.2研究內容2
    1.3研究架構及流程3
    第二章 路基土壤回彈模數5
    2.1前言5
    2.2回彈模數試驗規範沿革6
    2.3 T 292-91回彈模數試驗程序內容8
    2.3.1回彈模數試驗之土壤分類8
    2.3.2儀器裝置構造10
    2.3.3試體製作方式18
    2.3.4回彈模數試驗程序20
    2.4回彈模數影響因子24
    2.4.1試體製作方式與含水量24
    2.4.2應力水準28
    2.4.3試驗程序32
    2.4.4應力加載次數38
    2.4.5量測元件位置39
    2.4.6系統誤差40
    2.5回彈模數試驗結果與討論42
    2.5.1土壤性質與試驗準備42
    2.5.2含水量變化對回彈模數之影響46
    2.5.3軸桿摩擦力對回彈模數之影響48
    2.6回彈模數組成模式58
    2.6.1 T 292-91所建議之回彈模數組成模式58
    2.6.2其他常見之回彈模數組成模式59
    2.6.3軸差應力模式與Thompson and Robnet之雙折線模式比較65
    第三章路基土壤反覆載重下之塑性及回彈行為71
    3.1前言71
    3.2反覆載重下之臨界應力水準71
    3.3 shakedown 觀念81
    3.4路基土壤靜態三軸試驗85
    3.5路基土壤反覆載重試驗88
    3.6路基土壤反覆載重下之shakedown 行為90
    3.7路基土壤反覆載重下之塑性行為100
    3.7.1反覆載重下之塑性應變100
    3.7.2反覆載重下之塑性應變增加率114
    3.8路基土壤反覆載重下之回彈行為125
    3.8.1反覆載重下之回彈應變125
    3.8.2反覆載重下之回彈模數130
    第四章 路基土壤反覆載重下之塑性模式建構140
    4.1前言140
    4.2反覆載重下常用之塑性模式141
    4.2.1塑性應變與反覆載重次數間之關係模式141
    4.2.2簡化模式144
    4.3塑性模式參數決定148
    4.3.1εp(N) = I.NS模式148
    4.3.2εp(N) =εp(1) + S log N 模式155
    4.3.3εp(N) = BenXN S模式155
    4.4多元迴歸模式建構157
    4.4.1 Pearson相關分析158
    4.4.2多元迴歸塑性模式建構161
    4.4.3多元迴歸塑性模式驗證及應用164
    第五章 結論與建議167
    參考文獻171
    Reference 參考文獻
    李崇正,「三軸試驗誤差結果與其修正方法」,中國土木水利工程學刊,第6卷,第1期,第119-127頁,(1994)。
    金永斌、蕭達鴻、楊全成、郭呈彰,「路基土壤經穩定處理後工程特性之探討」,第八屆鋪面工程研討會論文集,第491-500頁,(1995)。
    房性中,「路基土壤彈性模數值與CBR值柔性路面厚度設計方法之研究」,碩士論文,私立中原大學,中壢,(1987)。
    房性中,「路基土壤回彈模數MR試驗與設計問題之探討」,土木工程技術,第八期,第95-118頁,(1997)。
    林炳森、林商裕、楊麗文,「卵礫石層回彈模數特性之研究」,第十屆鋪面工程學術研討會,第669-678頁,(1999)。
    林惠玲、陳正倉,統計學-方法與應用(下),雙葉書廊有限公司,二版,(2000)。
    黃偉慶,「柔性路面厚度設計法評估」,鋪面管理維護系統研討會專輯(二),中壢市,第118-134頁,(1991)。
    陳進、林志棟,「路基紅土回彈模數(Mr)特性之研究」,第六屆路面工程學術研討會論文集,第17-40頁,(1992)。
    張達德、傅業誠,「路基土壤與基底級配料之改良式MR試驗系統研究」,第八屆鋪面工程研討會論文集,第501-515頁,(1995)。
    劉明樓,「柔性路面車轍與疲勞龜裂之預測」,中國土木水利工程學刊,第九卷,第三期,第417-426頁,(1997)。
    劉明樓、黃琇雯、蘇珍立,「不同回彈模式對路面績效影響之分析」,第一屆鋪面工程師生研究成果聯合發表會,中壢,第54-63頁,(2000)。
    盧俊鼎、黃偉慶,「路基土壤回彈模數的發展與研究趨勢」,台灣公路工程,第二十三卷,第十一期,第2-15頁,(1997a)。
    盧俊鼎、黃偉慶,「路基土壤回彈模數試驗方法的演進與設備校正」,第九屆鋪面工程研討會論文集,第487-496頁,(1997b)。
    盧俊鼎、黃偉慶,「路基土壤回彈模數試驗系統校正及試體預處理效應評估」, 第十屆鋪面工程研討會論文集,第37-46頁,(1999)。
    蘇百加,「夯實紅土材料回彈模數之研究」,碩士論文,國立台灣科技大學,台北,(1988)。
    AASHTO, (1962). “The AASHTO road test, report 5.” Pavement Research, Special Report 73, Highway Research Board.
    AASHTO, (1986a). Guide for Design of Pavement Structures, American Association of State Highway and Transportation Officials.
    AASHTO, (1986b). Designation: T274-82; Standard Method of Test for Resilient Modulus of Subgrade Soils, American Association of State Highway and Transportation Officials.
    AASHTO, (1992). Designation: T292-91; Standard Method of Test for Resilient Modulus of Subgrade Soils and Untreated Base/Subbase Materials, American Association of State Highway and Transportation Officials.
    AASHTO, (1994). Designation: T294-92; Standard Method of Test for Resilient Modulus of Unbound Granular Base/Subbase Materials and Subgrade Soils-SHRP Protocol P46, American Association of State Highway and Transportation Officials.
    Asphalt Institute (1981). Thickness Design - Asphalt Pavement for Highways and Streets, Ninth, The Asphalt Institute, Manual Series No.1 (MS-1).
    Behzadi, G., and Yandell, W.O. (1996). “Determination of elastic and plastic subgrade soil parameters for asphalt cracking and rutting prediction.” Transportation Research Record, 1540, 97-104.
    Belytschko, T. (1972). “Plane stress shakedown analysis by finite elements.” International Journal of Mechnical Sciences, 14, 619-625.
    Brown, S.F., Lashine, A.K.F., and Hyde, A.F.L. (1975). “Repeated load triaxial testing of a silty clay.” Geotechnique, 25(1), 95-114.
    Chen, D.H., Zaman, M.M., and Laguros J.G. (1994). “Resilient moduli of aggregate materials:variability due to testing procedure and aggregate type.” Transportation Research Record, 1462, 57-64.
    Culley, R.W. (1971). “Effect of freeze-thaw cycling on stress-strain characteristics and volume change of a till subjected to repeated loading.” Canadian Geotechnical Journal, 8(3), 359-371.
    Diyaljee, A.M., and Raymond, G.P. (1982). “Repetitive load deformation of cohesionless soil.” Journal of the Geotechnical Engineering, ASCE, 123(7), 663-670.
    Drumm, E.C., Boateng-Poku, Y., and Pierce, T.J. (1990). “Estimation of subgrade resilient modulus from standard test.” Journal of Geotechnical Engineering, ASCE, 108(GT10), 1215-1229.
    Drumm, E.C., Reeves, J.S., Madgett, M.R., and Trolinger, W.D. (1997). “Subgrade resilient modulus correction for saturation effects.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 123(7), 663-670.
    Duncan, J.M., Byrne, P., Wong, K.S., and Mabry, P. (1980). “Strength, stress-strain and bulk modulus for finite element analysis of stresses and movements in soil masses.” Report No. UCB/GT/80-01, University of California, Berkeley.
    Elliott, R.P., and, Thornton, S.I. (1986). “Resilient modulus-what does it mean?” Proceedings 37th Highway Geology Symposium, Helena, Montana, 283-301.
    Elliott, R.P., and Thornton, S.I. (1988). “Simplification of subgrade resilient modulus testing,” Transportation Research Record, 1192, 1-7.
    Figueroa, J.L., and Thompson, M.R. (1980). “Simplified structural analysis of flexible pavement for secondary roads based on ILLI-PAVE.” Transportation Research Record, 776, 5-10.
    Fredlund, D.G., and Berbergan, A.T. (1977). “Relation between resilient modulus and stress conditions for cohesive subgrade soils,” Transportation Research Record, 642, 73-81.
    Gaskin, P.N., Raymond, G.P., and Addo-Abedi, F.Y. (1979). “Repeated compressive loading of a sand.” Canadian Geotechnical Journal, 16, 798-802.
    Huang, Y.H. (1993). Pavement Analysis and Design, Prentice Hall, Englewood Cliffs, N.J.
    International Union of Railways (1970). Question 71, Stresses in the rails, the ballast and in the formation resulting from traffic loads. In repeated loading of clay and track foundation design. IUR Office for Research and Experiments, Utrecht, Report 12, p.45.
    James, M., Khaled, K., Richard, A., and Farrar, M.J. (1994). “Factors influencing determination of a subgrade resilient modulus value.” Transportation Research Record, 1462, 72-78.
    Kenis, W. (1977). “Prediction design procedures-a design method for pavements using the VESYS structural subsystem.” Proceeding, 4th International Conference on Structural Design of Asphalt Pavement, Ann Arbor, Mich., 101-133.
    Khedr, S. (1985). “Deformation characteristics of granular base course in flexible pavement.” Transportation Research Record, 1043, 131-138.
    Konder, R.L. (1963). “Hyperbolic stress-strain response: cohesive soils.” Journal of Soil Mechanics and Foundation Engineering, ASCE, 89(1), 115-143.
    Kim, D.S., and Drabkin, S. (1994). “Accuracy improvement of external resilient modulus measurement using specimen grouting to end platens.” Transportation Research Record, 1462, 65-71.
    Lambe, T.W. (1958). “The structure of compacted clay.” Journal of Soil Mechanics and Foundation Engineering, ASCE, 84(SM2), 1654-1 to 1654-34.
    Larew, H.G., and Leonards, G.A. (1962). “A repeated load strength criterion.” Proceedings, 41, Highway Research Board, 529-556.
    Lee, W. (1993). Evaluation of in-service subgrade resilient modulus with consideration of seasonal effects. Ph.D. dissertation. Purdue University.
    Lotfi, H.A. (1984). Development of rational compaction specification cohesive soils. Ph.D. dissertation. University of Maryland.
    Makiuchi, K., and Shackel, B. (1976). “Soil characterization using a repeated loading cubical triaxial apparatus.” Proceedings, 8th Australian Road Research Board Conference, 8(7), 22-29.
    Melan, E. (1936). “Theorie Statisch unbestimmter systeme aus ideal-plastischen baustoff.” Sitzungsberichte der Akademie der Wissenschaften in Wien, 1: 45-195.
    Mitchell, R.J., and King, R.D. (1976). “Cyclic loading of an Ottawa area Champian sea clay.” Canadian Geotechnical Journal, 14, 52-63.
    Mohammad, L.N., Puppala, A.J., and Alavilli, P. (1994). “Influence of testing procedure and LVDT location on resilient modulus of soils.” Transportation Research Record, 1462, 91-101.
    Mohammad, L.N., Puppala, A.J., and Alavilli, P. (1995). “Resilient properties of labortary compacted subgrade soils.” Transportation Research Record, 1504, 87-102.
    Mohammad, L.N., Huang, B., Puppala, A., and Allen, J. (1999). “A regression model for resilient of subgrade soils.” Proceedings, Transportation Research Board.
    Monisimith, C.L., Ogawn, N., and Freeme, C.R. (1975). “Permanent deformation characteristics of subgrade soils due to repeated loading.” Transportation Research Record, 537, 1-17.
    Muhanna, A.S. (1994). A testing procedure and a model for resilient modulus and accumulated plastic strain of cohesive subgrade soils. Ph.D. dissertation. North Carolina State University.
    Muhanna, A.S., Rahman, M.S., and Lambe, P.C. (1998). “Model for resilient modulus and permanent strain of subgrade soils.” Transportation Research Record, 1619, 85-93.
    Muhanna, A.S., Rahman, M.S., and Lambe, P.C. (1999). “Resilient modulus measurement of fine-grained subgrade soils.” Transportation Research Record, 1687, 3-12.
    Ping, T., Zaman, M.M., and Laguros, J.G. (1998) “Gradation and moisture effects on resilient moduli of aggregate bases.” Transportation Research Record, 1619, pp.75-83.
    Ping, W.V., and Yang, Z. (1998). “Experimental verification of resilient deformation for granular subgrades.” Transportation Research Record, 1639, 12-22.
    Pezo, R.F., Carlos, G., Hudson, W.R., and StokoeⅡ, K.H. (1992). “Development of reliable resilient modulus test for subgrade and non-granular subbase materials for use in routine pavement design.” Report Ⅱ 77-4F, Center for Transportation Research, Universty of Texas at Austin.
    Norman, D., Pumphrey, J.R., and Lentz, R.W. (1986). “Deformation analyses of Florida highway subgrade sand subjected to repeated load triaxial tests.” Transportation Research Record, 1089, 49-56.
    Puppala, A., Mohammad, L.N., and Allen, A. (1996). “Engineering behavior of lime-treated Louisiana subgrade soil.” Transportation Research Record, 1546, 24-31.
    Quintus, H.V., and Killingsworth, B. (1998). “Analyses relating to pavement material characterization and their effects on pavement performance.” FHWA, Publication No. FHWA-RD-97-085.
    Raymond, G.P., Gaskin, P.N., and Addo-Abedi, F.Y. (1979). “Repeated compressive loading of Leda clay.” Canadian Geotechnical Journal, 14(1), 1-10.
    Seed, H.B., and Chan, C.K. (1959). “Undrained strength of compacted clays after soaking,” Journal of Soil Mechanics and Foundation Engineering, ASCE, 85(5), 87-128.
    Seed, H.B., Chen, C.K., and Lee, C.E. (1962). “Resilience characteristics of subgrade soils and their relation to fatigue in asphalt pavement.” Proceedings, First International Conference on the Structure Design of Asphalt Pavement, University of Michigan, 611-636.
    Seed, H.B., Mitry, F.G, Monismith, C.L., and Chen, C.K. (1967). “Prediction of flexible pavement deflections from laboratory repeated-load tests.” NCHRP Report 35, Highway Research Board.
    Sharp, R.W., and Booker, J.R. (1984). “Shakedown of pavements under moving surface loads.” Journal of Transportation Engineering, ASCE,110(1), 1-14.
    Sharp, R.W. (1985). “Pavement design based on shakedown analysis.” Transportation Research Record, 1022, 99-107.
    Thadkamalla,G.B., and George, K.P. (1995). “Characterization of subgrade soils at simulated field moisture,” Transportation Research Record, 1481, 21-27.
    Thompson, M.R., and Robnett, Q.L. (1979). “Resilient properties of subgrade soil.” Journal of Transportation Engineering, ASCE, 105(1), 71-89.
    Thompson, M.R. (1989). “Factors affecting the resilient moduli of soil and granular materials.” Workshop on Resilient Modulus Testing, Oregon State University, Corvallis, Oregon.
    Thornton, S.I., and Elliott, R.P. (1986). “Resilient modulus-what is it?” Proceedings 37th Highway Geology Symposium, Helena Montana, 267-282.
    Tseng, K.H., and Lytton, R.L. (1986). “Prediction of pavement deformation in flexible pavement materials. Presented at ASTM Symposium Implication of Aggregates in the Design, Construction and Performance of Flexible Pavements, New Orleans, La.
    Uzan, J. (1985). “Characterization of granular material.” Transportation Research Record, 1022, 52-59.
    Uzan, J. (1992). “Resilient characterization of pavement materials.” International Journal for Numerical and Analytical Methods in Geomechanics, 16, 453-459.
    Werkmeister, S., Dawson, A.R., and Wellner, F. (2001). “Permanent deformation behavior of granular materials and the Shakedown concept.” Proceedings 80th Annual Meeting, Transportation Research Board, Washington D.C., Paper No. 01-0152.
    Yapa, K.A.S.A. (1988). Simplified mechanistic rut depth prediction procedure for low volume roads. Master”s thesis, Texas A&M University College Station.
    Advisor
  • Wei-Hsing Huang(黃偉慶)
  • Files
  • 89322079.pdf
  • approve immediately
    Date of Submission 2002-07-15

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.