Title page for 89242001


[Back to Results | New Search]

Student Number 89242001
Author Chun-Chuen Yang(楊仲準)
Author's Email Address s9242001@phy.ncu.edu.tw
Statistics This thesis had been viewed 2165 times. Download 1175 times.
Department Physics
Year 2003
Semester 2
Degree Ph.D.
Type of Document Doctoral Dissertation
Language zh-TW.Big5 Chinese
Title Interplay among the structural, transport, and magnetic behaviors in Pr-based and Bi-based CMR material.
Date of Defense 2004-06-04
Page Count 167
Keyword
  • Charge ordering
  • CMR
  • Magnetic ordering
  • Magnetic structure
  • Neutron Scattering
  • Abstract Crystall structure of Pr0.65Ca0.25Sr0.1MnO3 at room temperature was revealed by using x-ray and neutron diffraction technologies. It crystallized into an orthorombic Pbnm phase at room temperature, and Jahn-Teller distortion was observed at 200 K. All high resolution neutron diffraction experiment, heat capacity, ac susceptibility, and resistivity measurements reveal a charge ordered state at 190 K, which can be transformed into the charge delocalized state by an applied magnetic field of strength larger then 2 T. We believed that it is the magnetostriction effect that transforms the CO state into the CD one. Below 180 K, the Mn moment becomes ordered into the p-CE AFM arrangement. A spin reorientation occurs between 100 K and 80 K. The Pr moments were also found to be ordered at 25 K. We obtained an H-T phase diagram for describing the thermo-magneto properties of Pr0.65Ca0.25Sr0.1MnO3.
    Both Bi1-xCaxMn0.95Cr0.05O3, with x=0.5 and 0.6 crystallized into an orthorombic Pbnm phase at room temperature. The Jahn-Teller distortion were observed at 285 K and 280 K of the x=0.5 and 0.6 compounds, respectively. The resistivity can be described by variable range hopping mechanism, where ρVHR=ρ0exp[(T/T0)^1/4], indicating a strong electron and phonon coupling for the present BCMCO system. The Mn were orderd at 90 K and 80 K for x=0.5 and 0.6 compounds, respectively. Phase separation, where Mn4+ clusters were surrounded by Mn3+ ions, was revealed in the ordered spin arrangement at low temperatures.
    Table of Content 摘要…………………………………………………………………………………………………I
    Abstract……………………………………………………………………………………………II
    致謝………………………………………………………………………………………………III
    目錄…………………………………………………………………………………………………IV
    圖目…………………………………………………………………………………………………V
    表目………………………………………………………………………………………………IX
    第一章 簡介
    1.1 龐磁阻材料簡介………………………………………………………………………………1
    1.2 研究目的………………………………………………………………………………………22
    Reference…………………………………………………………………………………………23
    第二章 樣品備製與實驗儀器
    2.1 樣品備製……………………………………………………………………………………26
    2.2 實驗儀器……………………………………………………………………………………27
    Reference…………………………………………………………………………………………42
    第三章 實驗理論
    3.1 交流磁化率理論……………………………………………………………………………43
    3.2 電阻率理論…………………………………………………………………………………48
    3.3 比熱理論……………………………………………………………………………………51
    3.4 中子散射理論………………………………………………………………………………54
    Reference…………………………………………………………………………………………66
    第四章 實驗結果與分析
    4.1 Pr0.65Ca0.25Sr0.1MnO3結果分析…………………………………………………………67
    4.2 Bi1-xCaxMn0.95Cr0.05O3結果分析………………………………………………………106
    Reference………………………………………………………………………………………130
    第五章 結論……………………………………………………………………………………132
    附錄一 中子磁繞射強度模擬程式……………………………………………………………136
    附錄二 中子磁繞射強度模擬程式輸入檔……………………………………………………151
    Curriculumvitae………………………………………………………………………………152
    Publications……………………………………………………………………………………153
    Reference Reference Chapter 1
    1. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472, (1988).
    2. R. Mahesh, R. Wang and M. Itoh, Phys. Rev. B 57, 104 (1998).
    3. G. H. Jonker and J. H. Vansanten, Physica 16, 337 (1950).
    4. C. Zener, Phys. Rev. 82, 403 (1951).
    5. P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).
    6. P.-G. de Gennes, Phys. Rev. 118, 141 (1960).
    7. John B. Goodenough, Phys. Rev. 100, 564 (1955).
    8. S. Roberts, Phys. Rev. 81, 865-868 (1951).
    9. U. H. Bents, Phys. Rev. 106, 225-230 (1957)
    10. E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545 (1955).
    11. J. Q. Li, M. Uehara, C. Tsuruta, Matsui, and Z. X. Zhao, Phys. Rev. Lett. 82, 2386 (1999).
    12. H. Yoshizawa, H. Kawano, Y. Tomioka, and Y. Tokura, Phys.Rev. B 52, R13 145 (1995).
    13. Y. Tomioka, A. Asamitsu, H. Kuwahara, Y. Moritomo, and Y. Tokura, Phys. Rev. B 53, R1689 (1996).
    14. H. Yoshizawa, R. Kajimoto, H. Kawano, Y. Tomioka, and Y. Tokura, Phys. Rev. B 55, 2729 (1997).
    15. M. R. Lees, J. Barratt, G. Balakrishnan, and D. McK. Paul, Phys. Rev. B 52, R14 303 (1995).
    16. J. M. De Teresa, M. R. Ibarra, C. Marquina, P. A. Algarabel, and S. Oseroff, Phys. Rev. B 54, R12 689 (1996).
    17. E. O. Wollan and W. C. Koehler, Phys. Rev 100, 545 (1955).
    18. Z. Jirák, S. Krupicka, Z. Simsa, M. Dlouha, and Vratislav, J. Magn. Magn. Mater. 53, 153 (1985).
    19. E. Pollert, S. Krupička, and E. Kuzmičová, J. Phys. Chem. Solids 43, 1137 (1982).
    20. P. Schiffer, A. P. Ramirez, W. Bao, and S.-W. Cheong, Phys. Rev. Lett.75, 3336 (1995).
    21. H. Y. Hwang, T. T. M. Palstra, S-W. Cheong, and B. Batlogg, Phys. Rev. B 52, 15046 (1995).
    22. Y. Moritomo, A. A. Asamitsu, and Y. Tokura, Phys. Rev. B 51, 16491 (1995).
    23. Z. Jirak, S. Krupicka, Z. Simsa, M. Dlouha, and Z. Vratislav, 53, 153 (1985)
    24. H. Yoshizawa, H. Kawano, Y. Tomioka, and Y. Tokura, Phys.Rev. B 52, R13 145 (1995).
    25. M. R. Lees, J. Barratt, G. Balakrishnan, and D. McK. Paul, Phys. Rev. B 52, R14 303 (1995).
    26. Y. Tomioka, A. Asamitsu, H. Kuwahara, Y. Moritomo, and Y. Tokura, Phys. Rev. B 53, R1689 (1996).
    27. J. M. De Teresa, M. R. Ibarra, C. Marquina, P. A. Algarabel, and S. Oseroff, Phys. Rev. B 54, R12 689 (1996).
    28. H. Yoshizawa, R. Kajimoto, H. Kawano, Y. Tomioka, and Y. Tokura, Phys. Rev. B 55, 2729 (1997).
    29. D. E. Cox, P. G. Radaelli, M. Mrezio. S-W. Cheong, Phys. Rev. B 57, 3305 (1998).
    30. V. A. Bokov, N. A. Grigoryan, and M. F. Bryzhina, Phys. Status Solidi 20, 745 (1967).
    31. H. Chiba, M. Kikuchi, K. Kusaba, Y. Muraoka, and Y. Syono, Solid State Commun. 99, 499 (1996).
    32. W. Bao, J. D. Axe, C. H. Chen, and S-W. Cheong, Phys. Rev. Lett. 78, 543 (1997).
    33. H. L. Liu, S. L. Cooper, and S-W. Cheong, Phys. Rev. Lett. 81, 4684 (1998).
    34. H. Woo, T. A. Tyson, M. Croft, S-W. Cheong, and J. C. Woicik, Phys. Rev. B 63, 134412 (2001).
    35. Y. Moritomo, A. Machida, S. Mori, N. Yamamoto, A. Nakamure, Phys. Rev. B 60, 9220 (1999)
    36. A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995)
    Reference Chapter 2
    1. 中子架設相關資料與規格可在NIST網站查詢,詳細位置如下http://rrdjazz.nist.gov/instruments/
    2. 詳細雙 模型的解釋在「Measurement of Heat Capacity By Fitting the Whole Temperature Response of a Heat-Pulse Calorimeter」的「fitting curve」一節,Jih Shang Hwang, Kai Lin, and Cheng Tien, Rev. Sci. Instrum. Vol. 68 (1), January 1997, p.94.
    3. PPMS Hardware & Options Manual (Quantum Design 1999).
    Reference Chapter 3
    1. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Chap. 31-33, (Saunders College, Philadelphia, 1976).
    2. C. Kittel, Introduction to Solid State Physics, 7th Ed., (J. Wiley and Sons, New York, 1996).
    3. Chikazumi, Physics of Magnetism, (J. Wiley Serise on the Science and Technology of Materials, New York, 1964).
    4. 黃昆(原著),韓汝琦(改編),固態物理學,高等教育出版社,北京,2002.
    5. H. Y. Hwang, S-W. Cheong, P. G. Radaelli, M. Marezio, and B. Batlogg, Phys. Rev. Lett. 75, 914 (1995).
    6. A. J. Millis, Phys. Rev. B53, 8434, (1996).
    7. L. J. Zou, H. Q. Lin, Q. Q. Zheng, J. App. Phys. 83 ,7362 (1998).
    8. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2th Ed., Chap. 2, (Clarendon press, Oxford, 1979).
    9. G. E. Bacon, Neutron Diffraction, 3th Ed., (Clarendon press, Oxford, 1975).
    10. G. L. Squires, Introduction of the Theory of Thermal Neutron Scattering, (Cambridge University press, Cambridge, 1978).
    11. S. W. Lovesey, Theory of Neutron Scattering from Condensed Matter, Vol. 1, (Clarendon press, Oxford, 1984).
    Reference Chapter 4
    1. D. E. Cox, P. G. Padaelli, M. Marezio, and S-W Cheong, Phys. Rev. B, 57, 3305 (1998).
    2. H. Yoshizawa, H. Kawano, Y. Tomioko, and Y. Tokura, Phys. Rev. B, 52, R13 145 (1995).
    3. A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).
    4. H. Röder, J. Zang, and A. R. Bishop, Phys. Rev. Lett. 76, 1356 (1996).
    5. A. J. Millis, Phys. Rev. B 53, 8434 (1996).
    6. C. Zener, Phys. Rev. 82, 403 (1951).
    7. P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).
    8. P.-G. de Gennes, Phys. Rev. 118, 141 (1960).
    9. J. M. De Teresa, M. R. Ibarra, C. Marquina, and P. A. Algarabel, Phys. Rev. B 54, 12689 (1996).
    10. E. O. Wollan and W. C. Koehler, Phys. Rev 100, 545 (1955).
    11. R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751 (1976).
    12. A. Banerjee, S. Pal, and B. K. Chaudhuri, J. Chem. Phys. 115, 1550 (2001).
    13. X. Liu, H. Zhu, and Y. Zhang, Phys. Rev. B 65, 024412 (2002).
    14. T. Kimura, R. Kumai, Y. Okimoto, Y. Tomioka, and Y. Tokura, Phys. Rev. B 62, 15021 (2000).
    15. S. B. Oseroff, M. Torikachvili, J. Singley, S. Ali, S.-W. Cheong, and S. Schultz, Phys. Rev. B 53, 6521 (1996).
    16. C. Rettori, D. Rao, J. Singley, D. Kidwell, and S. B. Oseroff, M. T. Causa, J. J. Neumeier, K. J. McClellan, S-W. Cheong, and S. Schultz, Phys. Rev. B 55, 3083 (1997).
    17. H. Woo, T. A. Tyson, M. Croft, S-W. Cheong, and J. C. Woicik, Phys. Rev. B 63, 134412 (2001).
    18. Y. Moritomo, A. Machida, S. Mori, N. Yamamoto, A. Nakamure, Phys. Rev. B 60, 9220 (1999).
    Advisor
  • Wen-Hsien Li(李文献)
  • Files
  • 89242001.pdf
  • approve immediately
    Date of Submission 2004-06-22

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.