Title page for 88622008


[Back to Results | New Search]

Student Number 88622008
Author Tsung-Wu Pan(潘宗吾)
Author's Email Address panwu@tpts4.seed.net.tw
Statistics This thesis had been viewed 2501 times. Download 1476 times.
Department Graduate Institute of Geophysics
Year 2001
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title 受薄壁效應影響的單井抽水試驗推估
非受壓含水層水文參數之研究
Date of Defense 2001-07-09
Page Count 75
Keyword
  • single well pumping test
  • skin effect
  • unconfined aquifer
  • Abstract 論文提要及內容:
    在低滲透性含水層中或受薄壁效應影響嚴重的情況下,因洩降錐無法延伸至鄰近的觀測井,不易取得觀測井中洩降資料,必須利用單井抽水/回水試驗或微水試驗量取抽水井中洩降變化推估含水層參數。本研究在新竹科學園區非受壓砂質含水層進行數次的單井抽水/回水試驗,探討薄壁效應對抽水試驗推估水力導數之影響。單井試驗抽水井中的洩降包括含水層受抽水影響的水頭損失與地下水流經薄壁、濾料、井篩的線性水井損失及井管中地下水擾流形成的非線性水井損失,本研究由於抽水流量小,地下水流速緩慢,可忽略非線性水井損失。選擇考慮薄壁效應影響、井管儲蓄效應、全程貫穿井的未受壓含水層水井水力學模式進行資料分析。敏感度分析顯示,薄壁效應對推估含水層水力導數影響較大,薄壁效應的影響導致推估含水層水力導數可相差達數倍至數十倍以上,單井試驗若忽略薄壁效應的影響會導致推估的水力導數偏低。本研究證明抽水井中大時間段洩降在半對數圖中與Log時間呈線性變化,此一直線斜率與薄壁效應、井管儲蓄效應無關,並可利用此直線斜率推估含水層傳導係數。故將抽水井洩降繪製於半對數圖上,利用大時間段洩降對Log時間的變化率求得具代表性的含水層水力導數為 (公尺/秒),符合現場礫石粗砂層的地質狀況。配合微水試驗推估出抽水井的薄壁效應參數值為Sw=19.2,利用二階段式分析方法可進一步推估出非受壓含水層比儲水係數Sy =1.81×10-2,儲水係數S=2.9×10-3、垂直方向的水力導數為1.5×10-5(公尺/秒),回水試驗資料驗證了推估參數的正確性。非受壓含水層在無法取得觀測井洩降資料的地區,可以不考慮井管儲蓄效應及薄壁效應影響,僅利用小流量長時間的單井抽水試驗推估具代表性的含水層水力導數,若再配合微水試驗利用本研究提出的二階段式分析方法可推估非受壓含水層的水文地質參數,並利用回水試驗進行參數驗證。
    Table of Content 目 錄
    論文提要……………………………………………………………….…I
    誌  謝………………………………………………………………...II
    目  錄………………………………………………………………..III
    圖 目 錄………………………………………………………………...V
    表 目 錄……………………………………………………………….VII
    符號說明…………………………...…………………………………VIII
    第一章 緒論……………………………………………………………..1
    1.1 序言………………………………………………………...1
    1.2 研究區域背景……………………………………………...6
    1.3 研究目的…………………………………………………...9
    第二章 未受壓含水層資料分析方法回顧……………………………10
    2.1 Neuman(1975)分析法……………………………………..14
    2.2 Moench(1997)分析法……………………………………...18
    第三章 理論分析………………………………………………………25
    3.1參數敏感度分析………..……………………………….…25
    3.1.1 WD敏感度分析……………………………………...26
    3.1.2 Sw敏感度分析………………………………………26
    3.1.3 Kd敏感度分析………………………………………30
    3.1.4 g敏感度分析………………………………………...35
    3.1.5 s敏感度分析………………………………………..40
    3.2大時間段近似解……..………………………………….…44
    3.3小時間段近似解………………..………………………….48
    3.4 建立分析方法…………………………………………….52
    第四章 現場試驗與資料分析…………………………………………56
    4.1 現場試驗………………………………………………….56
    4.2 資料分析………………………………………………….58
    4.3 大時間段半對數圖解法………………………………….63
    4.4 推估非受壓含水層參數…..……………………………...63
    4.5 驗證水文參數…………………………………………….69
    第五章 結論與建議……………………………………………………71
    參考文獻……………………………………………………………..…73
    Reference 參 考 文 獻
    何春蓀,1986。台灣地質圖說明書。經濟部中央地質調查所。163頁。
    宋明一,2001。兩階段式分析微水試驗資料推估薄壁因子與含水層水力導數。國立中央大學應用地質研究所碩士論文,共71頁。
    陳家洵,(1996a)。地下水及地盤下陷調查-台灣地區含水層特徵描述及地下水文參數推估(ΙΙ)。行政院農業委員會85年度試驗研究計劃報告,共128頁。
    塗明寬、陳文政,1990。台灣地質圖說明書—中壢。經濟部中央地質調查所。53頁。
    Abramowitz M., and I.A. Stegun, Handbook of Mathematical Functions. Dover Publications, Inc., New york, 1046pp, 1972.
    Barker J.A., and R. Herbert, “Pumping test in patchy aquifer,” Ground Water, 20(2), 150-155, 1982.
    Boulton N.S., “Unsteady radial flow to a pumped well allowing for delayed yield from storage,” in Gen. Assem. Rome, Tome ΙΙ, Int. Assoc. Sci. Hydrol. Publ., 37, 472-477, 1954.
    Boulton N.S., “Analysis of data from non-equilibrium pumping test allowing for delayed yield from storage,” Proc. Inst. Civil Engrs., 26, 469-482, 1963.
    Boulton N.S., “Analysis of data from pumping tests in unconfined anisotropic aquifers,” J. Hydrol., 10, 369-378, 1970.
    Cooper H.H. and C.E. Jacob, “A generalized graphical method for evaluating formation constants and summarizing well field history,” Am. Geophys. Union Trans., 27, 526-534, 1946.
    Dawson K.J. and J.D. Istok, Aquifer Testing, Lewis Publishers, Michigan, 344pp, 1991.
    Dupuit J., Etudes theoriques et pratiques sur le mouvement des eaux dans les canaux decouverts et a travers les terrains permeables, 2eme edition, Dunot. Paris, 304pp, 1863.
    Freeze K.A. and J.A. Cherry, Groundwater, Prentice-Hall, N.J., 604pp, 1979.
    Gradshteyn I.S. and I.M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York, 1160pp, 1980.

    Hurst W., The skin effect in producing wells, J. Pet. Tech., Nov, 1483-1489, 1969.
    Kruseman G.P. and N.A. de Ridder, Analysis and Evaluation of Pumping Test Data, International Institute for Land Reclamation and Improvement, The Netherlands, 377pp, 1990.
    Moench A.F., “Combining the neuman and boulton models for flow to a well in an unconfined aquifer,” Ground Water, 33(3), 378-384, 1995.
    Moench A.F., “Flow to a well of finite diameter in a homogeneous, anisotropic water table aquifer“, Water Resour. Res., 33(6), 1397-1407, 1997.
    Mucha I. And E. Paulikova, “Pumping test using large-diameter production and observation wells,” J. Hydrol., 89, 157-164, 1986.
    Neuman S.P., “Theory of flow in unconfined aquifers considering delayed response of the water table,” Water Resour. Res., 8(4)m 1031-1044, 1972.
    Neuman S.P., “Effects of partial penetration on flow in unconfined aquifers considering delayed aquifer response,” Water Resour. Res., (10)2, 303-312, 1974.
    Neuman S.P., “Analysis of pumping test data from anisotropic unconfined aquifers considering delayed gravity response,” Water Resour. Res., (11)2, 329-342, 1975.
    Novakowski K.S., “A composite analytical model for analysis of pumping test affected by well bore storage and finite thickness skin,” Water Resour. Res., 25(9), 1937-1946, 1989.
    Streltsova T.D., Well Testing in Heterogeneous Formations, John Wiley & Sons, New York, 413pp, 1988.
    Stehfest H., “Numerical inversion of laplace transforms,” Commun. ACM, 13, 47-49, 1970.
    Thiem G., Hydrologische Methoden, Gebhardt, Leipzig, 56pp,1906.
    Advisor
  • Chia-Shyun Chen(陳家洵)
  • Files
  • 88622008.pdf
  • approve immediately
    Date of Submission 2002-07-16

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.