Title page for 88522048


[Back to Results | New Search]

Student Number 88522048
Author Kia-Yi Wang(王凱億)
Author's Email Address No Public.
Statistics This thesis had been viewed 1795 times. Download 1296 times.
Department Computer Science and Information Engineering
Year 2000
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Progressive image compression based on integer wavelet transform and grey theory
Date of Defense 2001-07-02
Page Count 72
Keyword
  • image compression
  • wavelet
  • Abstract In this paper a progressive image compression approach based on
    our proposed integer wavelet transform and grey prediction is proposed.
    The integer wavelet transform is based on a reversible round-off linear
    transform algorithm to forward and backward transform integers without
    any loss. The proposed compression approach is combining the EZW
    method and a grey prediction to compress images. EZW is a famous
    wavelet-based image compression and the grey prediction is based on
    the grey theory to further improve the compression rate without
    degrading the image quality. The proposed approach is suitable for
    browsing large-scaled images. Several experiments and comparisons are
    conducted to evaluate the performance of the proposed approach.
    Table of Content 摘 要I
    誌 謝II
    目 錄III
    第一章緒論一
    第二章相關研究二
    第三章小波分解三
    第四章編碼演算法四
    第五章灰色預測五
    第六章實驗與討論六
    第七章結論七
    附 錄英文版論文八
    Reference [1]Autonimi, M., M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using wavelet transform,” IEEE Trans. Image Processing, Vol.1, pp.205-220, 1992.
    [2]Calderbank, A. R., I. Daubechies, W. Sweldens, and B. Yeo, Wavelet Transform That Map Integers to Integers, Tech. Rep., Dept. of Mathematics, Princeton University, Princeton, NJ, 1996.
    [3]Cohen, A., I. Daubechies, and J. Feauveau, “Bi-orthogonal bases of compactly supported wavelets,” Commun. Pure Appl. Math., Vol.45, pp.485-560, 1992.
    [4]Daubechies, I. and W. Sweldens, Factoring Wavelet Transforms into Lifting Steps, Bell Laboratories, Lucent Technologies, Murray Hill, NJ, 1996.
    [5]Deng, J.-L., “Control problem of grey system ,“ Systems and Control Letters, Vol.1, No.5, pp.288-294, 1982.
    [6]Deng, J.-L., “Grey system,” China’a Future and Development, No.4, pp.249-252, 1984.
    [7]Deng, J.-L., “Properties of Relational Space for Grey System,“ Grey System, Beijing, China Ocean Press, pp.1-13, 1988.
    [8]Deng, J.-L., “Introduction to grey systems therory, ” The Journal of Grey System, Vol.1, No.1, pp.1-24, 1989.
    [9]Deng, J.-L., “Grey information Space,” The Journal of Grey System, Vol.1, No.2, pp.103-117, 1989.
    [10]Dewitte, S. and J. Cornelis, “Lossless integer wavelet transform,” IEEE Signal Processing Letters, Vol.4, pp.158-160, 1997.
    [11]Golchin, F. and K. Paliwal, “Quadtree based classification with arithmetic and trellis coded quantization for subband image coding,” in Proc. Int. Conf. ASSP, 1997, pp.2921-2924.
    [12]Heer, V. K. and H.-E. Reinfelder, “A comparison of reversible methods for data compression,” in Proc. SPIE of Medical Imaging IV, 1990, pp.354-365.
    [13]Huang, H.-C. and J. L. Wu, ”Grey system theory on imgae processing and lossless data compression for HD-media,” Journal of Grey Theory & Pratic, Vol.3, No.2, pp.9-15, 1993.
    [14]Huang, Y.-P., H. C. Chu, and K. H. Hisa, “Dynamic grey modeling: theory and application,” in Proc The First National Symposium on Grey System Theory and Its Application, Taiwan, 1996, pp.47-56.
    [15]Joshi, R. L., V. J. Crump, and T. R. Fischer, “Image subband coding using arithmetic coded trellis coded quantization,” IEEE Trans. Circuits Syst. Vedio Technol., Vol.6, pp.515-523, 1995.
    [16]Joshi, R. L., H. Jafarkhani, J. H. Kasner, T. R. Fischer, N. Farvardin, M. W. Marcellin, and R. H. Bamberger, “Comparison of different methods of classification in subband coding of images” IEEE Trans. Image Processing, Vol.6, pp.1473-1486, 1997.
    [17]Munteanu, A., J. Cornelis, G. Van der Auwera, and P. Cristea, “A wavelet based lossless compression scheme with progressive transmission capability,” Int. J. Imaging Syst. Technol., Vol.10, pp.76-85, 1999.
    [18]Said, A. and W. Pearlman, “An image multiresolution representation for lossless and lossy compression,” IEEE Trans. Image Processing, vol.5, No.3, pp.1303-1310, 1996.
    [19]Shapiro, J. M., “Embedded image coding using zerotrees of wavelet coefficients,” IEEE Trans. Signal Processing, Vol.41, No.12, pp.3445-3462, 1993.
    [20]Shusterman, E. and M. Feder, “Image compression via improved quadtree decomposition algorithms,” IEEE Trans. Image Processing, Vol.3, pp.207-215, 1994.
    [21]Sodagar, I., H.-J. Lee, P. Hatrack, and Y.-Q. Zhang, “Scalable wavelet coding for synthetic/natural hybrid images,” IEEE Trans. Circuits Syst. Video Technol., vol. 9, no. 2, pp. 244-254, 1999.
    [22]Strobach, P., “Quadtree-structured recursive plane decomposition coding of image,” IEEE Trans. Signal Processing, Vol.39, pp.1380-1397, 1991.
    [23]Sullivan, E. and R. L. Baker, “Efficient quadtree coding o images and video,” IEEE Trans. Image Processing, Vol.3, 1994, pp.327-331.
    [24]Sweldens, W., “The lifting scheme: A custom design construction of biorthogonal wavelets,” J. Appl. Comput. Harmonic Anal., Vol.3, pp.186-200, 1996.
    [25]Teng, C.-Y., D. L. Neuhoff, J. A. Storer, and M. Cohn, “Quadtree-duided wavelet image coding,” in Proc. IEEE Data Compression Conf., 1996, pp.406-415.
    [26]Wang, H.-J. and C.-C. Kuo, “A multi-threshold wavelet coder (MTWC) for high fidelity image compression,” IEEE Trans. Image Processing, Vol.1, pp.652-655, 1997.
    [27]Woods, J. W. and S. D. O’Neil, “Subband coding of images,” IEEE Trans. Acoust., Speech, Signal Processing, Vol.34, pp. 1278-1288, 1986.
    [28]Wu, X., “Lossless compression of continuous-tone images via context selection, quantization, and modeling,” IEEE Trans. Image Processing, Vol.6, pp.656-664, 1997.
    [29]Zandi, A., J. D. Aleen, E. L. Scwartz, and M. Boliek, CREW: Compression with Reversible Embedded Wavelet, Tech. Rep. CRC-TR-9526, RICOH California Research Center, 1995.
    [30]Zhang, Y.-Q. and S. Zafar, “Motion-compensated wavelet transform coding for color compression,” IEEE Trans. Circuits Syst. Video Technol., Vol. 2, pp. 285-296, 1992.
    Advisor
  • Din-chang Tseng(曾定章)
  • Files
  • 88522048.pdf
  • approve immediately
    Date of Submission 2001-07-02

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.