Title page for 88341017


[Back to Results | New Search]

Student Number 88341017
Author Shun-Cheng Wang({)
Author's Email Address s8341017@cc.ncu.edu.tw
Statistics This thesis had been viewed 2597 times. Download 1470 times.
Department Chemical and Materials Engineering
Year 2003
Semester 1
Degree Ph.D.
Type of Document Doctoral Dissertation
Language English
Title The interaction between poly (ethylene glycol) and surfactants
Date of Defense 2003-10-09
Page Count 91
Keyword
  • Conductometry
  • Neutral polymer-surfactant interaction
  • Pearl-necklace model
  • viscosity
  • Abstract Mixtures of water-soluble polymers and surfactants in aqueous solutions are common in industrial applications and biological systems. Moreover, many end-products such as shampoos, detergents, and paints contain polymer/surfactant mixtures. An important issue in most applications is the fine-tuning of the solution viscosity by a suitable polymer/surfactant combination. In the present study, we focus on the linear homopolymer poly (ethylene glycol), which is the most commonly used substances in pharmaceutical and other industrial formulations, due to its high water solubility.
    The polymer-surfactant interaction leads to the formation of polymer-surfactant complex. The well-accepted morphology of the complex is the necklace model. In this scenario, a "necklace" is formed by the micelles (beads) and the uncharged, water-soluble polymer (string). It is evident that in this model the micelle size must be small compared to the characteristic size of the polymer, which corresponds to high molecular weight. Despite many studies on interactions between neutral polymer and anionic surfactant have supported the necklace scenario, the understanding of the nature of the neutral polymer-surfactant interaction is still incomplete. For example, the radius of gyration of a polymer with molecular weight of O (10³) is less than about 5 nm. One may ask how the necklace model be modified when the "string" is comparable to or smaller than the "bead."
    To explore the interaction of low molecular weight polymer with surfactant, we have to know the polymer size. Since the conductometry is used to study the polymer solution, we also have to understand the hindrance to ion mobility due to polymer. Hence, this thesis divided into three topics. In the first topic, we determine the second virial coefficients Bij (nm³) of poly(ethylene glycol) with molecular weight M=600-104 in water by freezing point depression. B12 represents the virial cross coefficient for two PEG solutes with different molecular weights M1 and M2. B11 can be well described by the scaling law M3h with h≃0.60. That is, the good solvent behavior is observed even for such low molecular weight. In terms of the hard-sphere model, the effective diameter of PEG ranges from 1.3 to 7.9 nm. Since the second virial coefficient is generally increased with decreasing temperature, our results at freezing point provide an upper bound. We also observe the effective hard-sphere picture is reasonable for dilute solutions of different polymer molecules in good solvents.
    In the second topic, we investigate the ion migration in polymer solutions of different molecular weights by conductometry for various inorganic salts. The electric conductivity
    Table of Content CONTENTS
    Page
    Abstract (Chinese)
    Abstract (English)
    Contents
    List of tables
    List of Figures
    Chapter 1 Introduction
    1.1Poly (ethylene glycol) KKKKKKKKKKKKKKKK..  1
    1.2Neutral polymer-surfactant interaction KKKKKKKKKK  2
    1.2.1Pearl-necklace model KKKKKKKKKKKK..  3
    1.2.2Previous work KKKKKKKKKKKKKKK.  4
    1.3Motivation and aim KKKKKKKKKKKKKKKKK..  5
    1.4Reference KKKKKKKKKKKKKKKKKKKKK.  9
      
    Chapter 2 Second virial coefficients of poly(ethylene glycol) in aqueous solutions at freezing point
    2.1Introduction ................................................................................. 11
    2.2Experiment section ...................................................................... 15
    2.2.1Materials ..................................................................... 15
    2.2.2Freezing-point depression  .......................... .............. 15
    2.2.3Background theory ...................................................... 15
    2.3Result and discussion ................................................................... 18
    2.4Reference ...................................................................................... 30
    Chapter 3 The ion migration in neutral polymer solution
    3.1Introduction .................................................................................. 32
    3.2Experiment  ................................................................................. 35
    3.2.1Materials ...................................................................... 35
    3.2.2Instrument ....................................................................... 35
    3.3Results and discussion .................................................................. 36
    3.4Reference ...................................................................................... 56
    Chapter 4 The effect of surfactant micelles on the viscosity of polyethylene oxide solution
     
    4.1Introduction ................................................................................... 57
    4.2Experimental section ..................................................................... 59
    4.2.1Materials ....................................................................... 59
    4.2.2Conductivity and viscosity measurements ...................... 60
    4.2.3UV absorption of BZA ................................................. 60
    4.3Results and discussion ................................................................... 60
    4.3.1Observation of viscosity increment amd ion mobility hindrance ...................................................................... 61
    4.3.2Transient network-forming model ................................ 64
    4.3.3Strong and weak binding demonstrated by@conductometry ....................................... 68
    4.3.4Weak attraction shown by thermodynamic instability .. 71
    4.4Conclusion ...................................................................................... 74
    4.5Reference ........................................................................................ 89
    Appendix .................................................................................................................. 90
    Reference Chapter 1. Introduction
    [ 1] Magazù, S., Physica B 1996, 226, 92.
    [ 2] Kjellander, R.; Florin, E., J. Chem. Soc. Faraday Trans. 1 1981, 77, 2053.
    [ 3] Bailey Jr, F. E.; Koleske, J. V., In Poly(ethylene oxide), Acedemic Press,
    NewYork, p.117 (1976).
    [ 4] Saeki, S.; Kuwahara, N.; Nakata, M.; Kaneko, M., Polymer 1976, 17, 685.
    [ 5] Robb, I. D., In anionic surfactants, edited by Lucassen-Reynders, E. H.,
    Plenum, New York, p.109 (1981).
    [ 6] Goddard, E. D., Colloid Surf. 1986, 19, 255.
    [ 7] Satio, S., In nonionic surfactants, edited by Schick, M. J., Dekker, New York,
    p.881 (1987).
    [ 8] Jones, M. N., J. Colloid Interf. Sci. 1967, 23, 36.
    [ 9] Francois, C.; Dayantis, J.; Sabbadin, J., Eur. Polym. J. 1985, 21, 165.
    [10] Cabane, B.; Duplessix, R. J. Phys. (Paris) 1987, 48, 651.
    [11] Zana, R.; Lianos, P.; Lang, J. J. Phys. Chem. 1985, 89, 41.
    [12] Turro, N. J.; Baretz, B. H.; Kuo, P.-L. Macromolecules 1984, 17, 1321.
    [13] Cabane, B. J. Phys. Chem. 1977, 81, 1639.
    [14] Bloor, D. M.; Holzwarth, J. F.; Wyn-Jones, E. Langmuir 1995, 11, 2312.
    [15] Ruckenstein, E.; Huber, G.; Hoffmann, H. Langmuir 1987, 3, 382.
    [16] Nagarajan, R. Colloids Surf. 1985, 13, 1.
    [17] White, F. R.; Engberts, J. B. F. N. Colloids Surf. 1989, 36, 417.
    [18] Dubin, P. L.; Gruber, J. m.; Xia, J.; Zang, M. J. Colloid Interface Sci. 1992,
     148, 35.
    [19] Maltesh, C.; Somasundaran, P. Langmuir, 1992, 8, 1926.     
    [20] Maltesh, C.; Somasundaran, P. J. Colloid Interface Sci. 1993, 157, 14.
    [21] Gao, Z.; Wazylishen, R. E. and Kwak, J. C. T. J. Phys. Chem. 1991, 95, 462.
    [22] Schwuger, J. J. Colloid Interface Sci. 1973, 43, 491.
    [23] Moroi, Y.; Akisada, H., Satio, M. and Matuura, R. J. J. colloid interface Sci.
    1992, 148, 35.
    [24] Treiner, C.; Nguyen, D. J. Phys. Chem. 1990, 94, 2021.
    [25] Xia, J.; Dubin, P. J. Phys. Chem. 1992, 96, 6805.
    [26] Shirahama, K. Colloid Polym. Sci. 1974, 252, 978.
    [27] Shirahama, K.; Ide, N. J. Colloid Interface Sci. 1976, 54, 450.
    [28] Brackman, J. C.; Engberts, J. B. F. N. Langmuir, 1991, 7, 46.
    [29] Chari, K.; Antalek, B.; Lin, M. Y.; Sinha, S. K. J. Chem. Phys. 1994, 100, 5294.
    [30] Gilanyi, T.; Wolfram, E. Colloid Surf. 1981, 3, 181.
    [31] Kamenka, N.; Burgaud, I.; Treiner, C.; and Zana, R. Langmuir, 1994, 10, 3455.
    [32] Minatti, E.; Zanette, D. Colloids and Surfaces. A 1996, 113, 1237.
    [33] Zanette, D.; Ruzza, Ấ. A.; Froehner, and Minatti, E. Colloids and Surfaces. A
    1996, 108, 91.
    [34] Froehner, S. J.; Belarmino, A.; Zanette Colloids and Surfaces. A
    1998, 137, 131..
    Chapter 2 The Second virial coefficients of poly(ethylene glycol) in aqueous solutions at freezing point
    [ 1] Barrow, G. M. Physical Chemistry, 5th edition, McGraw-Hill, Singapore,
    292 (1988).
    [ 2] Lee, J. H.; Lee, H. B.; Andrade, J. D. Prog. Polym. Sci. 1995, 20, 1043.
    [ 3] Allen, C.; Maysinger, D.; Eisenberg, A. Colloids Surf. B 1999, 16, 3.
    [ 4] La. S. B.; Pkano, T.; Kataoka, K. J. Pharm. Sci. 1996, 85, 85.
    [ 5] Riley, T.; Govender, T.; Stolnik, S.; Xiong, C. D.; Garnett, M. C.; Illum, L.;
    and Davis, S. S. Colloids Surf. B 1999, 16, 147.
    [ 6] Stockton, W. B.; Rubner, M. F. Macromolecules 1997, 30, 2717.
    [ 7] Devanand, K.; Selser, J. C. Macromolecules, 1991, 24, 5943.
    [ 8] Kawaguchi, S.; Imai, G.; Suzuki, J.; Miyahara, A.; Kitano, T.; and Ito, K.
    polymer, 1997, 38, 2885.
    [ 9] Polik, W. F.; Burchard, W. Macromolecules, 1983, 16, 978.
    [10] Bekiranow, S.; Bruinsma, R.; and Pincus, P. Phys. Rev. E. 1997, 55, 577.
    [11] Dormidontova. E. E., Macromolecules, 2002, 35, 987.
    [12] Harismiadis, V.; Szleifer, I. Mol. Phys. 1994. 81,851.
    [13] Flory, P. Principle of polymer chemistry, Cornell University Press: Ithaca, NY,
       chapter II, 1991.
    [14] De Gennes, P. VG. Scaling comcepts in polymer physics Cornell University
    Press, Ithaca, NY, 1993; chapter.
    [15] Young, R. J.; Lovell, P. A. Introduction to polymers, Chapman & Hall; 1993 New York.
    [16] Zimmerman, R. J.; Chao, H.; Fullerton, G. D.; Cameron, I. L. J. Biochem. Biophys. Methods 1993, 26, 61.
    [17] Hayward, R. C.; Graessley, W. W. Macromolecules 1999, 32, 3502.
    [18] Striolo, A.; Prausnitz, J. M. J. Chem. Phys. 2000, 113, 2927.
    [19] McQuarrie, D. A. Statistical Mechanics, HarperCollins Publishers Inc., New York, chapter 12 (1976).
    Advisor
  • Heng-Kwong Tsao(ڥ)
  • Files
  • 88341017.pdf
  • approve in 1 year
    Date of Submission 2003-10-12

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.