Title page for 88341010


[Back to Results | New Search]

Student Number 88341010
Author Sheng-Li Ko(柯勝利)
Author's Email Address ko333@ms58.hinet.net
Statistics This thesis had been viewed 2331 times. Download 965 times.
Department Chemical and Materials Engineering
Year 2002
Semester 2
Degree Ph.D.
Type of Document Doctoral Dissertation
Language English
Title Study of the Synthesis of Oligo(phenylenevinylene)s
and Their Photophysical and Optoelectronic Properties /
Stereoselective Synthesis of (Z)-a-Phenoxymethy-
lene-g-butyrolactone from 2-Propynyloxybenzene
Date of Defense 2003-07-07
Page Count 209
Keyword
  • butyrolactone
  • distyrylbenzene derivatives
  • Abstract A series of distyrylbenzene (DSB) derivatives, as oligo(para-phenylene-
    vinylene) (OPV), were synthesized and assessed as the emitter in organic light
    emitting diode (OLED) fabrication. The presence of electron-withdrawing cyano
    group and electron-donating methoxy group at various positions in the molecule to
    evaluate their influence on the photophysical property and the electroluminescent
    behavior of these derivatives in OLED were studied. Bright blue emissions were
    achieved with these materials as a dopant. There were not much difference in the
    absorption and emission spectra of the compounds containing n-hexyloxy and
    2-ethylhexyloxy groups. However, 2-ethylhexyloxy groups produce more saturated
    blue color in their EL. The compounds with higher fluorescent quantum yield did not
    result in higher EL quantum efficiency in this multiplayer OLED fabrication as that of
    compounds with lower fluorescent quantum yield. DSB derivatives with cyano and
    alkoxy groups grew epitaxially on the friction-transferred poly(tetrafluoroethylene)
    (PTFE) layer. DSBs/PTFE double layers indicated the remarkable anisotropic feature
    in absorption and emission properties. We concluded that trans,trans-1,4-
    di(2-ethyl-hexyloxy)-2,5-bis[2-(4-cyanophenyl)ethenyl]benzene molecules take two
    kinds of orientations on the PTFE layer in which the long axes of
    trans,trans-1,4-di(2-ethyl-hexyloxy)-2,5-bis[2-(4-cyanophenyl)ethenyl]benzene are
    parallel and normal to the substrate surface. On the other hand, the long axes of
    trans,trans-1,4-di(2-ethylhexyloxy)-2,5-bis[2-(2-cyanophenyl)ethenyl]- benzene and
    trans,trans-1,4-di(2-ethyl-hexyloxy)-2,5-bis[2-(3-cyanophenyl)-ethenyl]benzene ori-
    ent inclined and parallel to the substrate, respectively. Treatment of conjugated
    alkynone with NaI, TMSCl, and water in acetonitrile gave deconjugated
    (Z)-3-iodo-3-alken-1-one in good yield and with high stereoselectivity (≥95%).
    Mechanistic study showed that HI, generated from NaI, TMSCl and water, underwent
    regioselective addition to the conjugated ynone, e.g. 3-decyn-2-one, to form
    (E)-4-iodo-3-decen-2-one and (Z)-4-iodo-3-decen-2- one. Then, TMSCl catalyzed the
    deconjugation reaction to form deconjugated (Z)-4-iodo-4-decen-2-one. The
    application of the above deconjugation reaction was demonstrated by the
    stereoselective synthesis of (Z)-α-phenoxy-methylene- γ-butyrolactone and its
    hydrofuran analogues. DNA cleavage study also showed that γ-butyrolactone with
    (Z)-configuration at α-alkylidene gave better result than its analogue even at 10µM
    for only 10 min. The development of an efficient method for the preparation of
    (Z)-α-phenoxy-methylene-γ-butyrolactone and (Z)-α-phenylthiomethyl-γ-butyro-
    lactone derivatives from 2-propynyoxybenzene and 2-propynylthiobenzene were
    described.
    Table of Content 中文摘要………………….…………………………..... I
    Abstract ……………………………………………..… III
    CHAPTER 1 Efficient Electroluminescent
    Material for Light-Emitting
    Diodes from 1,4-Distyrylbenzene
    Derivatives
    Page
    Abstract ……………………………………………… 1
    1.1 Introduction ……………………………………………… 1
    1.2 Instrumentation ……………………………………………… 2
    1.3 Devices Fabrication ……………………………………………… 3
    1.4 Results and Discussion ……………………………………………… 4
    1.5 Conclusion ……………………………………………… 18
    1.6 Experimental ……………………………………………… 18
    1.7 References ……………………………………………… 26
    Chapter 2 Fabrication and Characteriz-
    ation of Orientatation-Controll-
    ed Alkoxy- and Cyano-Sub-
    stituted Distyrylbenzene Deriva-
    tives in Thin Film
    Page
    Abstract ……………………………………………… 29
    2.1 Introduction ……………………………………………… 29
    2.2 Results and Discussion ……………………………………………… 30
    2.3 Conclusion ……………………………………………… 52
    2.4 Experimental ……………………………………………… 53
    2.5 References ……………………………………………… 56
    Chapter 3 Stereoselective Synthesis of
    (Z)-α-Phenoxy-methylene-γ-buty
    rolactone from 2-Propynyloxy-
    benzene as DNA Cleavage
    Reagent
    Page
    Abstract ……………………………………………… 57
    3.1 Introduction ……………………………………………… 57
    3.2 Results and Discussion ……………………………………………… 71
    3.3 Conclusion ……………………………………………… 77
    3.4 Experimental ……………………………………………… 78
    3.5 References ……………………………………………… 95
    Chapter 4 Stereoselective Synthesis of
    (Z)-α-Phenylthio-methylene-γ-
    butyrolactone and Its Analogues
    from 2-Propynylthiobenzene
    Page
    Abstract ……………………………………………… 100
    4.1 Introduction ……………………………………………… 100
    4.2 Results and Discussion ……………………………………………… 101
    4.3 Conclusion ……………………………………………… 104
    4.4 Experimental ……………………………………………… 104
    4.5 References ……………………………………………… 110
    Chapter 5 Conclusion Page
    5.1 Study of the Synthesis of
    Oligo(phenylenevinylene)s
    and Their Photophysical
    and Opto- electronic
    Properties
    ………………………………………………
    112
    5.2 Stereoselective Synthesis of
    (Z)-α-Phenoxymethylene-γ-
    butyrolactone from
    2-Propynyloxybenzene
    ………………………………………………
    114
    List of Schemes Page
    Scheme 1.1 Synthesis of the Cyano- or Methoxy-Substituted Distyryl-
    benzene………………………………………………………..…
    5
    Scheme 3.1 Plausible Mechanism for the TMSCl-Catalyzed Deconjugation
    of (Z)-4-iodo-4-decen-2-one……………………………………..
    64
    Scheme 3.2 Plausible Hydroiodination and Deconjugation Processes for
    3-Decyn-2-one……………………………………………………
    66
    Scheme 3.3 Plausible Mechanism for Pd-Catalyzed CO Insertion and
    Cyclization………………………………………………………..
    69
    Scheme 3.4 Irreversible Alkylation of the Methylene Lactone
    Moiety…………………………………………………………....
    71
    Scheme 3.5 Preparation of α-Phenoxymethylene or Phenoxymethyl-
    Substituted γ-Butyrolactones………………………………….…
    74
    Scheme 4.1 Preparation of α-Phenylthiomethylene or Phenylthiomethyl-
    Substituted γ-Butyrolactones……………………………………..
    103
    List of Figures Page
    Figure 1.1 Device Configuration of Blue EL Devices……..…………………. 4
    Figure 1.2 Normalized UV spectra of DSB derivatives and emission of
    TPBI………………………………………………………………..
    6
    Figure 1.3 Relative HOMO/LUMO Energy Levels of ITO, NPB, CBP, TPBI,
    Mg:Ag Alloy, and CN-PPV Oligomers…………..………………..
    9
    Figure 1.4 Relative Energy Levels of Materials in the Three-Layer
    Device………………………………………………..………..…...
    10
    Figure 1.5 Normalized EL spectra of DSBs in ITO/NPB/CBP/TPBI + Dopant
    (1%)/MgAg….……………..…………………………………….
    11
    Figure 1.6 CIE Coordinates of 1-1 ~ 1-3……………………………………… 12
    Figure 1.7 I-V Curve and Luminescence of DSB Series 1-1 ~ 1-3………..….. 13
    Figure 1.8 I-V Curve and Luminescence of DSB Series 1-4 ~ 1-6……..…….. 13
    Figure 1.9 I-V Curve and Luminescence of DSB Series 1-7 ~ 1-9…..……….. 14
    Figure 1.10 Turn-on Voltage of DSB Series…………………………..………... 14
    Figure 1.11 CIE Coordinates of 1-4 ~ 1-6…………………………..………….. 16
    Figure 1.12 CIE Coordinates of 1-7 ~ 1-9………………………..…………….. 17
    Figure 2.1 Molecular Structures of DSB Derivatives Used Here…………….. 30
    Figure 2.2 Absorption and PL Spectra of DSBs in CHCl3 Solution….…….… 32
    Figure 2.3 TEM and ED pattern of 2-1/PTFE(a), 2-2/ PTFE(B) and
    2-3/PTFE(c) double layer………………………………….……….
    33
    Figure 2.4 Experimental set up for polarized PL mesurement and polarized
    absorption and PL spectra of DSBs/PTFE double layer……..…….
    35
    Figure 2.5 Proposed Model of Molecular Orientation of DSBs/PTFE Double
    Layer………………………………………………………….……
    37
    Figure 2.6 AFM image of 2-1 film deposited on a friction-transferred PTFE
    layer kept at rt. (film thickness: 20 nm)……………………………
    38
    Figure 2.7 AFM image of 2-1 film deposited on a KBr substrate kept at rt.
    (film thickness: 20 nm)………………………………………….…
    39
    Figure 2.8 AFM image of 2-2 film deposited on a friction-transferred PTFE
    layer kept at rt. (film thickness: 20 nm)……………………………
    40
    Figure 2.9 AFM image of 2-2 film deposited on a KBr substrate kept at rt.
    (film thickness: 20 nm)………………………………….…………
    41
    Figure 2.10 AFM image of 2-3 film deposited on a friction-transferred PTFE
    layer kept at rt. (film thickness: 20 nm)…………………………....
    42
    Figure 2.11 AFM image of 2-3 film deposited on a KBr substrate kept at rt.
    (film thickness: 20 nm)…………………………………….………
    43
    Figure 2.12 AFM image of 1-2 film deposited on a friction-transferred PTFE
    layer kept at rt. (film thickness: 20 nm)…………………………....
    44
    Figure 2.13 AFM image of 1-2 film deposited on a KBr substrate kept at rt.
    (film thickness: 20 nm)………………………………………….…
    45
    Figure 2.14 AFM image of 1-3 film deposited on a friction-transferred PTFE
    layer kept at rt. (film thickness: 29 nm)…………………….……...
    46
    Figure 2.15 AFM image of 1-3 film deposited on a KBr substrate kept at rt.
    (film thickness: 29 nm)…………………………………………….
    47
    Figure 2.16 AFM image of 1-3 film deposited on a friction-transferred PTFE
    layer kept at 50℃. (film thickness: 37 nm)………………………..
    48
    Figure 2.17 AFM image of 1-3 film deposited on a KBr substrate kept at 50℃.
    (film thickness: 37 nm)…………….………………………………
    49
    Figure 2.18 UV-VIS spectra of 2-1, 2-2, and 2-3 films deposited on a KBr
    substrate……………………………………………………………
    50
    Figure 2.19 Polarized absorption spectra of 2-1 / PTFE double layer………….. 50
    Figure 2.20 Polarized absorption spectra of 2-2 / PTFE double layer………….. 51
    Figure 2.21 Polarized absorption spectra of 2-3 / PTFE double layer…………. 51
    Figure 2.22 Polarized absorption spectra of 1-2 / PTFE double layer………….. 52
    Figure 3.1 1H-NMR Spectra Changes with Time for TMSCl-Promoted
    Deconjugation of (E)- and (Z)-4-Iodo-3-decen-2-one to Form
    (Z)-4-Iodo-4-decen-2-one…………………………………………..
    63
    Figure 3.2 DNA Cleavage Study of 3-8a (Compound 2) and 3-9a (Compound
    1) at Different Concentration in DMSO……………………………
    75
    Figure 3.3 DNA Cleavage Study of 3-8a (Compound 2) and 3-9a (Compound
    1) at Different Time………………………………………………...
    76
    Figure 3.4 DNA Cleavage Study of 3-8a (Compound 2) and 3-9a (Compound
    1) at Different pH Values…………………………………………...
    77
    List of Tables Page
    Table 1.1 The absorption λmax, extinction coefficiency, emission λmax,
    excitation λmax, fluorescent quantum yield, and the appearance
    color of PPV oligomers…………………………………………….
    8
    Table 1.2 Performance of the LEDs Fabricated in This Study………………. 15
    Table 3.1 Conversion of (Z)-3-Iodo-3-alken-1-one A into (Z)-a-Alkyli dene-
    γ- butyrolactone C…………………………………………….…...
    68
    Appendix Page
    1H NMR spectrum of Compound 1-1 …………………………..……... 116
    13C NMR spectrum of Compound 1-1 …………………………..……... 117
    1H NMR spectrum of Compound 1-2 …………………………..……... 118
    13C NMR spectrum of Compound 1-2 …………………………..……... 119
    1H NMR spectrum of Compound 1-3 …………………………..……... 120
    13C NMR spectrum of Compound 1-3 …………………………..……... 121
    1H NMR spectrum of Compound 1-4 …………………………..……... 122
    13C NMR spectrum of Compound 1-4 …………………………..……... 123
    1H NMR spectrum of Compound 1-5 …………………………..……... 124
    13C NMR spectrum of Compound 1-5 …………………………..……... 125
    1H NMR spectrum of Compound 1-6 …………………………..……... 126
    13C NMR spectrum of Compound 1-6 …………………………..……... 127
    1H NMR spectrum of Compound 1-7 …………………………..……... 128
    13C NMR spectrum of Compound 1-7 …………………………..……... 129
    1H NMR spectrum of Compound 1-8 …………………………..……... 130
    13C NMR spectrum of Compound 1-8 …………………………..……... 131
    1H NMR spectrum of Compound 1-9 …………………………..……... 132
    13C NMR spectrum of Compound 1-9 …………………………..……... 133
    1H NMR spectrum of Compound 2-1 …………………………..……... 134
    13C NMR spectrum of Compound 2-1 …………………………..……... 135
    1H NMR spectrum of Compound 2-2 …………………………..……... 136
    13C NMR spectrum of Compound 2-2 …………………………..……... 137
    1H NMR spectrum of Compound 2-3 …………………………..……... 138
    13C NMR spectrum of Compound 2-3 …………………………..……... 139
    1H NMR spectrum of Compound 3-1a …………………………..……... 140
    13C NMR spectrum of Compound 3-1a …………………………..……... 141
    1H NMR spectrum of Compound 3-1b …………………………..……... 142
    13C NMR spectrum of Compound 3-1b …………………………..……... 143
    1H NMR spectrum of Compound 3-2a …………………………..……... 144
    13C NMR spectrum of Compound 3-2a …………………………..……... 145
    1H NMR spectrum of Compound 3-2b …………………………..……... 146
    13C NMR spectrum of Compound 3-2b …………………………..……... 147
    1H NMR spectrum of Compound 3-2c …………………………..……... 148
    13C NMR spectrum of Compound 3-2c …………………………..……... 149
    1H NMR spectrum of Compound 3-2d …………………………..……... 150
    13C NMR spectrum of Compound 3-2d …………………………..……... 151
    1H NMR spectrum of Compound 3-3a …………………………..……... 152
    13C NMR spectrum of Compound 3-3a …………………………..……... 153
    1H NMR spectrum of Compound 3-3b …………………………..……... 154
    13C NMR spectrum of Compound 3-3b …………………………..……... 155
    1H NMR spectrum of Compound 3-3c …………………………..……... 156
    13C NMR spectrum of Compound 3-3c …………………………..……... 157
    1H NMR spectrum of Compound 3-3d …………………………..……... 158
    13C NMR spectrum of Compound 3-3d …………………………..……... 159
    1H NMR spectrum of Compound 3-4a …………………………..……... 160
    13C NMR spectrum of Compound 3-4a …………………………..……... 161
    1H NMR spectrum of Compound 3-4b …………………………..……... 162
    13C NMR spectrum of Compound 3-4b …………………………..……... 163
    1H NMR spectrum of Compound 3-4c …………………………..……... 164
    1H NMR spectrum of Compound 3-5a …………………………..……... 165
    1H NMR spectrum of Compound 3-5b …………………………..……... 166
    1H NMR spectrum of Compound 3-5c …………………………..……... 167
    13C NMR spectrum of Compound 3-5c …………………………..……... 168
    1H NMR spectrum of Compound 3-5d …………………………..……... 169
    1H NMR spectrum of Compound 3-6a …………………………..……... 170
    1H NMR spectrum of Compound 3-6b …………………………..……... 171
    13C NMR spectrum of Compound 3-6b …………………………..……... 172
    1H NMR spectrum of Compound 3-6c …………………………..……... 173
    13C NMR spectrum of Compound 3-6c …………………………..……... 174
    1H NMR spectrum of Compound 3-6d …………………………..……... 175
    13C NMR spectrum of Compound 3-6d …………………………..……... 176
    1H NMR spectrum of Compound 3-7a …………………………..……... 177
    13C NMR spectrum of Compound 3-7a …………………………..……... 178
    1H NMR spectrum of Compound 3-7d …………………………..……... 179
    13C NMR spectrum of Compound 3-7d …………………………..……... 180
    1H NMR spectrum of Compound 3-8a …………………………..……... 181
    13C NMR spectrum of Compound 3-8a …………………………..……... 182
    1H NMR spectrum of Compound 3-8b …………………………..……... 183
    13C NMR spectrum of Compound 3-8b …………………………..……... 184
    1H NMR spectrum of Compound 3-8c …………………………..……... 185
    13C NMR spectrum of Compound 3-8c …………………………..……... 186
    1H NMR spectrum of Compound 3-8d …………………………..……... 187
    13C NMR spectrum of Compound 3-8d …………………………..……... 188
    1H NMR spectrum of Compound 3-9a …………………………..……... 189
    13C NMR spectrum of Compound 3-9a …………………………..……... 190
    1H NMR spectrum of Compound 3-9b …………………………..……... 191
    13C NMR spectrum of Compound 3-9b …………………………..……... 192
    1H NMR spectrum of Compound 3-9d …………………………..……... 193
    13C NMR spectrum of Compound 3-9d …………………………..……... 194
    1H NMR spectrum of Compound 4-1 …………………………..……... 195
    1H NMR spectrum of Compound 4-2 …………………………..……... 196
    13C NMR spectrum of Compound 4-2 …………………………..……... 197
    1H NMR spectrum of Compound 4-3 …………………………..……... 198
    13C NMR spectrum of Compound 4-3 …………………………..……... 199
    1H NMR spectrum of Compound 4-4 …………………………..……... 200
    13C NMR spectrum of Compound 4-4 …………………………..……... 201
    1H NMR spectrum of Compound 4-6 …………………………..……... 202
    13C NMR spectrum of Compound 4-6 …………………………..……... 203
    1H NMR spectrum of Compound 4-7 …………………………..……... 204
    13C NMR spectrum of Compound 4-7 …………………………..……... 205
    1H NMR spectrum of Compound 4-8 …………………………..……... 206
    13C NMR spectrum of Compound 4-8 …………………………..……... 207
    1H NMR spectrum of Compound 4-9 …………………………..……... 208
    13C NMR spectrum of Compound 4-9 …………………………..……... 209
    Reference Chapter 1
    1.7 REFERENCES
    1.N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, and A. B. Holems, Nature, 1993, 365, 628.
    2.H. E. Katz, S. F. Bent, W. L. Wilson, M. L. Schilling, and S. B. Ungashe, J. Am. Chem. Soc. 1994, 116, 6631.
    3.(a) D. Oelkrug, A. Tompert, J. Gierschner, H. J. Egelhaaf, M. Hanack, M. Hohloch, and E. Steinhuber, J. Phys. Chem. B 1998, 102, 1902. (b) A. Heller, J. Chem. Phys. 1964, 40, 2839.
    4.S. E. Döttinger, M. Hohloch, D. Hohnholz, J. L. Segura, E. Steinhuber, and M. Hanack, Synth. Metals, 1997, 84, 267.
    5.H. Ndayikengurukiye, S. Jacobs, W. Tachelet, J. van der Looy, A. Pollaris, H. J. Geise, M. Claeys, J. M. Kauffamnn, and S. Janietz, Tetrahedron, 1997, 53, 13811.
    6.J. Cornil, D. A. dos Santos, D. Beljoune, and J. L. Brédas, J. Phys. Chem. 1995, 99, 5604.
    7.D. Oelkrug, A. Tompert, H. J. Egelhaaf, M. Hanack, E. Steinhuber, M. Hohloch, H. Meier, and U. Stalmach, Synth. Metals, 1996, 83, 231.
    8.(a) K. H. Schweikart, M. Hanack, L. Lüer, and D. Oelkrug, Eur. J. Org. Chem. 2001, 293. (b) S. Nakatsuji, K. Matsuda, Y. Uesugi, K. Nakashima, S. Akiyama, G. Katzer, and W. Fabian, J. Chem. Soc. Perkin Trans. 2, 1991, 861.
    9. J. L. Segura and N. Martin, J. Mater. Chem. 2000, 10, 2403.
    10.S. E. Döttinger, M. Hohloch, J. L. Segura, E. Steinhuber, M. Hanack, A. Tompert, and D. Oelkrug, Adv. Mater. 1997, 9, 233.
    11.M. Hennecke, T. Damerau, and K. Mullen, Macromolecules 1993, 26, 3411.
    12.C. Hosokawa, H. Higashi, H. Nakamura, and T. Kusumoto, Appl. Phys. Lett. 1995, 67, 3853.
    13.N. N. Barashkov, D. J. Guerrero, H. J. Olivos, and J. P. Ferraris, Synth. Metals 1995, 75, 153.
    14.M. Hohloch, J. L. Segura, S. E. Döttinger, D. Hohnholz, E. Steinhuber, H. Spreitzer, and M. Hanack, Synth. Metals 1997, 84, 319.
    15.B. Strehmel, A. M. Sarker, J. H. Malpart, V. Strehmel, H. Seifert, and D. C. Neckers, J. Am. Chem. Soc. 1999, 121, 1226.
    16.(a) B. E. Koene, D. E. Loy, and M. E. Thompson, Chem. Mater. 1998, 10, 2235. (b) J. Shi, C. W. Tang, and C. H. Chen, U. S. Patent 1997, 5, 645, 948. (c) C. H. Chen and J. Shi, Coord. Chem. Rev. 1998, 171, 161.
    17.Since the absorption
    Advisor
  • none(羅芬臺)
  • Hui Chen(陳暉)
  • Files
  • 88341010.pdf
  • approve in 2 years
    Date of Submission 2003-07-08

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.