Title page for 88323008


[Back to Results | New Search]

Student Number 88323008
Author Chang-Hao Yang(楊章豪)
Author's Email Address No Public.
Statistics This thesis had been viewed 1922 times. Download 1312 times.
Department Mechanical Engineering
Year 2000
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title Influence of Environment Factors on High-Cycle Fatigue Behavior of Austempered Ductile Cast Iron
Date of Defense 2001-07-18
Page Count 88
Keyword
  • Austempered Ductile Cast Iron
  • High-Cycle Fatigue
  • Abstract The purpose of this study is to investigate the influence of various aqueous solutions and ambient air temperatures on the high-cycle fatigue (HCF) behavior of austempered ductile iron (ADI) . The effects of presence of chloride, pH value and temperature in aqueous solution on the HCF resistance were characterized. HCF results obtained in air at temperature ranging from room temperature to 250oC were made a comparison to characterize the temperature effect on HCF strength of ADI. Fractography and microstructural analyses with scanning electron microscopy (SEM) were conducted to determine the fatigue crack initiation and propagation modes.
    Experimental results show the HCF lives in room-temperature water, 3.5% NaCl, 80oC 3.5% NaCl, and sulfuric acid solutions were shorter than those in room-temperature air for the given ADI. In addition, increasing solution temperature, adding chloride, and decreasing pH value would further decrease the HCF life as compared to room-temperature water. Among these factors, the decrease of pH value generated the most detrimental effect on HCF resistance. The SAE 10W40 lubrication oil provided an inert environment to increase the HCF life of ADI as compared to atmospheric environment. The synergism between corrosive environment and cyclic stresses was primarily responsible for the reduction of HCF life as the effect of prior corrosion did not significantly change the fatigue life when tested in air.
    At temperatures from room temperature to 300oC, the tensile strength of ADI was invariant with temperature. The fatigue life of ADI would decrease with increasing temperature at high stress levels. However, the fatigue lives in 220oC and 250oC at low stress levels were comparable with those in 180oC. This is due to the fact that a higher temperature would cause more carbide precipitation and increase the temperature of Ms for martensitic transformation. Therefore, the unstable retained austenite could transform to martensite more easily under cyclic loading at higher temperatures. The volume expansion resulting from this transformation would produce residual compressive stress at crack tip to retard fatigue crack growth and extend fatigue life.
    Table of Content List of Tables
    List of Figures.
    第一章 簡介
    1-1 沃斯回火球墨鑄鐵之研究及發展
    1-2 沃斯回火熱處理
    1-3 不同環境溫度下球墨鑄鐵之機械性質文獻回顧
    1-4 沃斯回火球墨鑄常溫與中高溫之疲勞性質與破壞機構
    1-5 腐蝕疲勞與破壞機構
    1-6 鑄鐵腐蝕性質文獻回顧
    1-7 研究目的
    第二章 實驗程序
    2-1 材料及試片製作
    2-2 沃斯回火熱處理
    2-3 實驗環境
    2-4 中高溫拉抻及硬度試驗
    2-5 軸向疲勞試驗
    2-6 電化學試驗
    2-7 破斷面觀察
    2-8 X-ray繞射分析
    第三章 結果與討論
    3-1 材料的機械性質、微結構及耐腐蝕力
    3-2 腐蝕環境參數對高週疲勞性質的影響
    3-3 不同環境溫度下之機械性質比較
    3-4 不同環境溫度下之高週疲勞性質比較
    3-5 破斷面觀察……………………………………………………
    第四章 結論
    參考文獻
    Tables
    Figures
    Reference 1]洪敏雄, “沃斯回火球墨鑄鐵之簡介,” 沃斯回火球墨鑄鐵專輯, 中華民國鑄造學會77年全國學會大會, 1988.
    [2]潘國桐、廖高宇譯, 球墨鑄鐵手冊, 中華民國鑄造學會編印, 1994.
    [3]D. Venugopalan, K. L. Pilon, and A. Alagarsamy, “Influence of Microstructure on Fatigue Life of As-Cast Ductile Iron,“ AFS Transactions, Vol. 96, 1988, pp. 697-704.
    [4]F. D. Griswold, Jr and R. I. Stephens, “Comparison of Fatigue Properties of Nodular Cast Iron Production and Y-block Castings,” International Journal of Fatigue, Vol. 9, 1984, pp. 3-10.
    [5]P. A. Blackmore and K. Morton, “Structure-Property Relationships in Graphitic Cast Iron,” International Journal of Fatigue, Vol. 4, 1982, pp. 149-155.
    [6]K. Ikawa and G. Ohira, “Fatigue Property of Cast Iron in Relation to Graphite Structure,” Cast Metals Research Journal, Vol. 3, 1967, pp. 11-21.
    [7]J. F. Janowak and R. B. Gundalach, “Approaching Austempered Ductile Iron Properties by Controlled Cooling in the Foundry,” Journal of Heat Treating, Vol. 4, 1985, pp. 25-31.
    [8]J. E. Bevan and W. G. Scholz, “Effect of Molybdenum on Transformation Characteristics and Properties of High-Strength Ductile Iron,” AFS Transactions, Vol. 85, 1977, pp. 271-276.
    [9]張瑞模, “沃斯回火球墨鑄鐵之應用例,” 鑄造月刊, 第118期, 民國88年, pp 8-12.
    [10]洪敏雄、周兆民, “球墨鑄鐵之變韌鐵化處理,” 機械月刊, 第13卷, 第6期, 民國76年, pp. 95-105.
    [11]陳耀堡、施登士, “應用模內球化法鑄製球墨鑄鐵及其沃斯回火處理,” 鑄工, 第84期, 民國84年, pp. 1-10.
    [12]B. V. Kovacs, “On the Terminology and Structure of ADI,” AFS Transactions, Vol. 102, 1994, pp. 417-420.
    [13]M. Bahmani, R. Elliott, and N. Varahram, ”The Relationship between Fatigue-Strength and Microstructure in an Austempered Cu-Ni-Mn-Mo Alloyed Ductile Iron,” Journal of Materials Science, Vol. 32, 1992, pp. 5383-5388.
    [14]K. P. Jen, J. Wu, and S. Kim, “Study of Fracture and Fatigue Behavior of Austempered Ductile Iron,” AFS Transactions, Vol. 100, 1992, pp. 833-846.
    [15]J. Aranzabal, I. Gutierrez, J. M. Rodriguezibabe, and J. J. Urcola, ” Influence of the Amount and Morphology of Retained Austenite on the Mechanical-Properties of an Austempered Ductile Iron,” Metallurgical and Materials Transactions A, Vol. 28A, 1997, pp. 1143-1156.
    [16]C. P. Cheng, S. M. Chen, T. S. Lui, and L.H.Chen, ”High-Temperature Tensile Deformation and Thermal Cracking of Ferritic Spheroidal Graphite Cast Iron,” Metallurgical and Materials Transactions A, Vol. 28A, 1997, pp. 325-333.
    [17]Y. Ishihara, “Mechanical Properties of Austempered Ductile Iron at Elevated Temperature up to 500oC,” Imono, Vol. 57, 1986, pp. 250-254.
    [18]T. S. Lui, T. A. Din, and L.H.Chen, “The Tensile Deformation Behavior of Austempered Spheroidal Graphite Cast Iron at Elevated Temperature,” Imono, Vol. 64, 1992, pp. 45-48.
    [19]Y. Ishihara, “Low Temperature Properties of Austempered Ductile Iron,” Imono, Vol. 58, 1986, pp. 29-34.
    [20]J. A. Bannantine, J. J. Comer, and J. L. Handrock, Fundamentals of Metal Fatigue Analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, USA, 1990.
    [21]周兆民譯, "沃斯回火球墨鑄鐵-I," 鑄造月刊, 第66期, 民國84年, pp. 17-25.
    [22]賴炳坤, “沃斯回火球墨鑄鐵之高週疲勞性質研究,” 國立中央大學機械工程研究所碩士論文, 1995.
    [23]K. Fukuyama, N. Hasegawa, and K. Inaba, ” Fatigue Properties of Austempered Ductile Cast Iron at Room and Elevated Temperatures,” Journal of the Society of Materials Science, Japan, Vol. 44, 1995, pp. 1164-1170.
    [24]魏景元, “不同斷面沃斯回火球墨鑄鐵之高週疲勞性質,” 國立中央大學機械工程研究所碩士論文, 1996.
    [25]L. Bartosiewicz, A. R. Krause, B. Kovacs, and S. K. Putatunda, “Fatigue Crack Growth Behavior of Austempered Ductile Cast Iron,” AFS Transactions, Vol. 130, 1992, pp. 135-142.
    [26]L. Bartosiewicz, A. R. Krause, F. A. Alberts, I. Singh, and S. K. Putatunda, “Influence of Microstructure on High-Cycle Fatigue Behavior of Austempered Ductile Cast Iron,” Materials Characterization, No. 30, 1993, pp. 221-234.
    [27]P. Shanmugam, P. P. Rao, K. R. Udupa, and N. Venkataraman, “Effect of Microstructure on the Fatigue Strength of an Austempered Ductile Iron,” Journal of Materials Science, Vol. 29, 1994, pp. 4933-4940.
    [28]T. J. Marrow, and H. Cetinel, “Short Fatigue Cracks in Austempered Ductile Cast Iron, “Fatigue and Fracture of Engineering Materials and Structures , Vol. 23, 2000, pp. 425-434.
    [29]P. C. Paris and F. Erdogan, “A Critical Analysis of Crack Propagation Laws,” Journal of Basic Engineering, Vol. 85, 1960, pp. 528-534.
    [30]Y. Tanaka, Z. Yang, and K. Miyamoto, “Evaluation of Fatigue Limit of Spheroidal Graphite Cast Iron,” Materials Transactions, JIM, Vol. 36, 1995, pp. 749-756.
    [31]M. Takita and Y. Ueda, ”Effect of Retained Austenite on Properties of Austempered Ductile Iron,” Cast Metals, Vol. 1, 1988, pp. 147-155.
    [32]S. Doi, Y. Mimura, K. Sato, T. Hiroyasu, and H. Ikeda, “Fatigue Strength of Austempered Ductile Cast Iron Under Thermal Environment,” Transactions of the Japan Society of Mechanical Engineers, Vol. 63, 1997, pp. 7-12.
    [33]B. J. Weng, S. T. Chang, H. N. Liu, and S. E. Hsu, “Crack Initiation and Propagation of Austempered Ductile Iron and its Properties,” Chinese Journal of Materials Science, Vol. 23, 1991, pp. 278-286.
    [34]M. R. Bayoumi, “Fatigue Behavior of a Commercial Aluminum Alloy in Sea Water at Different Temperatures,” Engineering Fracture Mechanics, Vol. 45, 1993, pp. 297-307.
    [35]S. Suresh, Fatigue of Materials, Cambridge University Press, New York, 1991, Chapter 12.
    [36]F. P. Ford and M. Silverman, Mechanistic Aspects of Environment-Controlled Crack Propagation in Steel/Aqueous Environment System, Report No. HTGE-451-8-12, General Electric Company, Schenectady, New York, 1979.
    [37]K. J. Miller and R. Akid, “The Application of Microstructural Fracture Mechanics to Various Metal Surface States,” Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, Vol. 452, 1996, pp. 1411-1432.
    [38]R. Akid and G. Murtaza, “Environment Assisted Short Crack Growth Behaviour of a High Strength Steel,” pp. 193-207 in Short Fatigue Cracks, ESIS 13, Mechanical Engineering Publications, London, 1992.
    [39]D. J. Duquette, “A Review of Aqueous Corrosion Fatigue,” pp.12-24 in Corrosion Fatigue: Chemistry, Mechanics and Microstructure, Edited by O. Devereux, A. J. Evily, and R. W. Staehle, National Association of Corrosion Engineers, Houston, 1971.
    [40]柯賢文, 腐蝕及其防制, 全華科技出版社, 台北, 1995, pp. 127-135.
    [41]左景伊, 應力腐蝕破裂, 西安交通大學出版社, 陝西西安, 1985, pp. 1-9.
    [42]J. D. Atkinson, J. Yu, Z. Y. Chen, and Z. J. Zhao, “Modelling of Corrosion Fatigue Crack Growth Plateaux for RPV Steels in High Temperature Water,” Nuclear Engineering and Design, Vol. 184, 1998, pp. 13-25.
    [43]Y. Nakai, K. Tanaka, and R. P. Wei, “Short-Crack Growth in Corrosion Fatigue for a High Strength Steel,” Engineering Fracture Mechanics, Vol. 24, 1986, pp. 433-444.
    [44]R. P. Wei, “Some Aspects of Environment-Enhanced Fatigue Crack Growth,” Engineering Fracture Mechanics, Vol. 1, 1970, pp. 633-651.
    [45]S. Muthukumarasamy and S. Seshan, “Corrosion and Corrosion-Fatigue of Ductile Irons,” AFS Transaction, Vol. 16, 1992, pp. 873-879.
    [46]M. G. Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill, Inc., New York, USA, 1986.
    [47]M. M. Gahfelehbashi and P. Davami, “Effect of Graphite Shape on the Mechanical Properties and Corrosion Resistance of Ni-Resist Cast Irons,” AFS International Cast Metals Journal, Vol. 2, 1977, pp. 41-46.
    [48]A. O. Surendranathan, K. R. Hebbar, and H. V. S. Nayak, “Aqueous Corrosion Behaviour of Ductile Iron and Ductile Iron Containing 1.5Ni-0.3Mo,” Journal of the Electrochemical Society of India, Vol. 45, 1996, pp. 61-69.
    [49]O. E. Okorafor and C. R. Loper, “Embrittlement of Ductile Cast Irons Exposed to Water,” Indian Journal of Technology, Vol. 23, 1985, pp. 214-222.
    [50]“Standard Practice for Conducting Constant Amplitude Axial Fatigue Tests of Metallic Materials,” ASTM E466-96, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing and Materials, West Conshohocken, PA, USA, 1998, pp. 471-475.
    [51]“Standard Test Method for Tension Testing of Metallic Materials,” ASTM E8M-98, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing and Materials, West Conshohocken, PA, USA, 1998, pp. 78-98.
    [52]“Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation,” ASTM E975-95, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing and Materials, West Conshohocken, PA, USA, 1998, pp. 675-680.
    [53]B. D. Cullity, Elements of X-Ray Diffraction, 2nd Ed., Addison-Wesley Publishing Company, Inc., California, USA, 1978, p. 411.
    [54]王鎮和, “不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為,” 國立中央大學機械工程研究所碩士論文, 2000.
    [55]J. B. Duh, W. T. Tsai, and H. Chang, “Effect of Potential on the Corrosion Fatigue Crack Growth Rate of Fe-Al-Mn Alloy in 3.5% NaCl Solution,” Corrosion, Vol. 46, 1990, pp. 983-988.
    [56]J. Aranzabal, I. Gutierrez, J. M. Rodrigues-lbabe, and J. J. Urcola, “Influence of Heat Treatments on Microstructure and Toughness of Austempered Ductile Iron,” Materials Science and Technology, Vol. 8, 1992, pp. 263-273.
    [57]K. Hori and T. Kobayashi, “Crack Closure on Fatigue Crack Propagation in Austempered Ductile Iron,” Imono, Vol. 65, No. 10, 1993, pp. 777-782.
    [58]Y. Tanaka and H. Ishii, “Effect of the Graphite Nodule Size on Fatigue Properties of Austempered Spheroidal Graphite Cast Iron,” Imono, Vol. 63, No. 8, 1991, pp. 699-705.
    [59]田永奎, 金屬腐蝕與防護, 機械工業出版社, 大陸, 1992.
    [60]鮮祺振, 腐蝕理論與實驗, 徐氏基金會, 台北, 1974, pp. 4-5.
    Advisor
  • Chih-Kuang Lin(林志光)
  • Files
  • 88323008.pdf
  • approve immediately
    Date of Submission 2001-07-18

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.