Title page for 88322067


[Back to Results | New Search]

Student Number 88322067
Author Ming-Chuan Kuo(郭明傳)
Author's Email Address s8322067@cc.ncu.edu.tw
Statistics This thesis had been viewed 2089 times. Download 420 times.
Department Civil Engineering
Year 2004
Semester 2
Degree Ph.D.
Type of Document Doctoral Dissertation
Language zh-TW.Big5 Chinese
Title The measurement of block volumetric fraction and the mechanical behaviors of composite rock mass
Date of Defense 2005-07-19
Page Count 294
Keyword
  • artificial composite rock mass
  • composite rock mass
  • failure criterion
  • failure mode
  • micromechanics model
  • scanline
  • volumetric fraction
  • Abstract Composite rock mass is a mixture of rocks, composed of geotechnically significant blocks with a bonded matrix of finer texture or rock materials with two kinds of distinct strength and stiffiness. Because of the heterogeneity, anisotropy and complex nature, composite rock mass is a kind of difficult geotechnical material with which to deal in geotechnical engineering. The engineering properties and mechanical behaviors of composite rock mass are mainly influenced by the mechanical properties of composite materials, volumetric fraction of block, preferred block orientation and the anisotropic behaviors of deformation and strength.
    The volumetric fraction of block is a general parameter for assessing the overall engineering properties of composite rock mass. By analyzing the crossing length between the block and scanline in representative volume element (RVE), this research represented the discussion on the influence of total length of scanline, diameter of block, volumetric fraction of block, the aspect ratio of block and the preferred block orientation on the volumetric fraction of block measured by scanline. Using the concept of confidence level and confidence interval offers a qualitative and quantitative description of the volumetric fraction.
    Furthermore, the main purpose of this research is to investigate the failure strength, deformation properties and mechanical behaviors of composite rock mass from both theorectical and experimental approaches. The preparation technique for artificial composite rock mass which overall mechanical properties are macroscopically isotropic and transversely isotropic is developed. A series of triaxial tests are conducted to investigate the influence of the volumetric fraction, confining pressure, the orientation angle on the composite rock mass. In the experiment carried out, a procedure using a rotary scanner to obtain the “unrolled” images of rock specimens at different stress level during the uniaxial compressive tests is employed. Based on the experimental results, the failure modes of isotropic rock mass and transversely isotropic rock mass are classified.
    For theoretical prediction, five micromechanical models are used to predict the Young’s modulus and Poisson’s ratio of isotropic composite rock mass with different block proportions. Comparing the theoretical predictions with test results, the feasibility of using the micromechanical models to predict the mechanical properties of isotropic composite rock mass was investigated. A new failure criterion for the transversely isotropic rocks has been developed and presented. The criterion is based on the maximum axial strain criterion, the constitutive laws of linearly elastic of anisotropic materials and the theory of single plane of weakness. The predictions of the failure strength of various types of transversely isotropic rock masses with different orientation angles and under various confining pressures agree well with experimental data. The accuracy and the versatility of the criterion are demonstrated.
    Table of Content 摘 要I
    AbstractIII
    目 錄V
    圖 目 錄IX
    表 目 錄XXI
    第一章 緒論1
    1.1 研究動機1
    1.2 研究目的與方法4
    1.3 論文內容及架構5
    第二章 人造複合岩體之製作技術8
    2.1 等向性複合岩體之製作9
    2.1.1試體製作方式及流程9
    2.2 橫向等向性複合岩體之製作11
    2.2.1 模型材料之選擇12
    2.2.2 模型材料之組成13
    2.2.3 模型材料A及材料B之力學性質13
    2.2.4 橫向等向性複合岩體之製作流程15
    第三章 複合岩體之表面影像18
    3.1 表面展開影像之擷取18
    3.2 複合岩體之體積比量測方法22
    3.2.1 單位重法24
    3.2.2 面積比法25
    3.2.3 掃瞄線法32
    3.3 球形岩塊之表面影像特徵36
    3.3.1 複合岩體表面影像之顆粒幾何特性36
    3.3.2 表面影像推求複合岩體內部組成及粒徑特性44
    第四章 掃瞄線法之數值模擬54
    4.1 串接掃瞄線法之數值模擬54
    4.2 串接表徵單元法之數值模擬60
    4.2.1 代表性表徵單元(RVE)之選取61
    4.2.2 數值模擬架構之說明63
    4.2.3 數值模擬流程66
    4.2.4 掃瞄線總長度、面積比與標準差的關係74
    4.3 等圓球顆粒粒徑之數值模擬驗證82
    4.4 不同圓球顆粒粒徑之數值模擬驗證83
    4.5 橢圓球顆粒之數值模擬架構90
    4.5.1 橢圓球顆粒之代表性表徵單元選定91
    4.5.2 橢圓球顆粒之數值模擬流程94
    4.5.3 長短軸比 值及夾角 值與標準差的關係97
    4.6 顆粒之形狀因素探討108
    4.7 標準差與信心度之關係114
    4.8 案例演算及整體標準差之求取115
    4.9 現地案例之驗證123
    4.10 掃瞄線法之經驗建議長度探討128
    第五章 複合岩體之破壞模態130
    5.1 等向性岩體之破壞模態136
    5.2 等向性複合岩體之破壞模態140
    5.3 橫向等向性岩體之破壞模態147
    5.4 橫向等向性複合岩體之破壞過程及破壞模態152
    5.4.1 橫向等向性複合岩體之破壞過程153
    5.4.2 橫向等向性複合岩體之破壞模態分類167
    第六章 複合岩體之材料組成律172
    6.1 線彈性材料之組成律模式173
    6.1.1 單一彈性對稱面材料174
    6.1.2 三正交彈性對稱面材料175
    6.1.3 具一旋轉彈性對稱軸材料176
    6.1.4 完全對稱性材料178
    6.2 複合岩體之等值均質化觀念178
    6.2.1 等向性複合岩體之材料組成律180
    6.2.2 橫向等向性複合岩體之材料組成律199
    第七章 複合岩體之破壞準則205
    7.1 等向性材料之破壞準則206
    7.2 等向性複合岩體之破壞準則212
    7.3 橫向等向性材料之破壞準則217
    7.3.1數學理論之連續函數破壞準則218
    7.3.2非連續函數之破壞準則228
    7.3.3經驗公式之連續函數破壞準則236
    7.3.4 Tien and Kuo (2001)破壞準則246
    7.4橫向等向性複合岩體之破壞準則270
    7.4.1 橫向等向性複合岩體之破壞模態預測274
    第八章 結論與建議276
    8.1 結論276
    8.2 建議280
    參考文獻 282
    Reference (1)方世榮,統計學導論,華泰文化事業股份有限公司,台北 (1991)。
    (2)田永銘、王仲宇、黃宗義、賴逸少,「互層岩體之組成律及破壞準則」,行政院國家科學委員會專題研究計畫成果報告,中壢 (1994)。
    (3)田永銘、王仲宇、王仁正、賴逸少,「人造異向性岩體製作及其力學性質(Ⅰ)」,行政院國家科學委員會專題研究計畫成果報告,中壢 (1995)。
    (4)田永銘、許宗傑、陳慶洪,「人造異向性岩體製作及其力學性質(Ⅱ)」,行政院國家科學委員會專題研究計畫成果報告,中壢 (1996)。
    (5)田永銘、趙柏烽、楊世和,「人造異向性岩體製作及其力學性質(Ⅲ)」,行政院國家科學委員會專題研究計畫成果報告,中壢 (1997)。
    (6)田永銘、郭明傳、蔡文傑、曹昌為,「利用混成岩表面影像推求內部岩塊特性之可行性研究」,第十屆大地工程研討會,三峽,第683∼687頁 (2003)。
    (7)古智君,「巨觀等向性併構岩之製作及其力學行為」,碩士論文,國立中央大學土木工程學系,中壢 (2004)。
    (8)何春蓀,台灣地質概論—台灣地質圖說明書,經濟部中央地質調查所,台北,第122-124頁 (1997)。
    (9)宋銘峰,「人造軟弱互層岩體之製作及其界面力學性質量測」,碩士論文,中央大學土木工程學系,中壢 (1998)。
    (10)宋擁軍,「含氣量對混凝土抗凍性能的影響」,中國三峽建設,第11期 (1999)。
    (11)林銘郎、鄭富書、翁作新、洪如江,「台灣斷層泥之特性及斷層泥力學評估新發展」,地工技術雜誌,第79期,第91-106頁 (2000)。
    (12)周文賢,統計學,智勝文化事業有限公司,台北 (1997)。
    (13)洪如江,工程地質之影像,財團法人地工技術研究發展基金會,台北,第77-79頁 (1999)。
    (14)許靖華,大地構造與沈積作用,地質出版社,北京 (1985)。
    (15)許靖華,「混成岩與台灣之混成岩構造」,中國地質學會會刊,第31卷,第二期,第87-92頁 (1988)。
    (16)許宗傑,「人造互層岩體之製作及其力學性質」,碩士論文,中央大學土木工程學系,中壢 (1997)。
    (17)孫思優,「岩石三軸室應變量測改進」,碩士論文,國立中央大學土木工程學系,中壢 (2002)。
    (18)徐鐵良,台灣東部海岸山脈地質,台灣省地質調查所彙刊,第八號,第39-63頁 (1956)。
    (19)陳志霖,「放射性廢料處置場緩衝材料之力學性質」,碩士論文,國立中央大學土木工程學系,中壢 (2000)。
    (20)楊長義、黃燦輝、蘇建彰,「岩石模擬材料之相似性選擇原則」,中國土木水利工程學刊,第十卷,第一期,第151-156頁 (1998)。
    (21)劉哲明,「混成岩模型試體製作與體積比量測」,碩士論文,中央大學土木工程學系,中壢 (2002)。
    (22)蔡文傑,「巨觀等向性混成岩製作表面影像與力學性質」,碩士論文,中央大學土木工程學系,中壢 (2003)。
    (23)趙柏烽,「人造異向性岩體製作及其力學行為」,碩士論文,中央大學土木工程學系,中壢 (1997)。
    (24)譚建國,「以微分模式研究複合材料之力學性質」,行政院國家科學委員會專題研究計畫成果報告,台南 (1980)。
    (25)譚建國、顏崇斌,「以微分模式探求纖維加強複合材料之熱彈係數」,中國工程學刊,第五卷,第三期,第121-131頁 (1982)。
    (26)譚建國、王永明,「多相複合材料之微分模式:Ⅰ.整體彈性係數」,中國工程學刊,第六卷,第二期,第72-83頁 (1983)。
    (27)Aboudi, J., Mechanics of Composite Materials: A Unified Micromechanical Approach, Elsevier, Amsterdam (1991).
    (28)Allirot, D., Boehler, J. P., and Sawczuk, A., “Irreversible deformation of an anisotropic rock under hydrostatic pressure,” Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. Vol. 14, pp. 77-83 (1977).
    (29)Amadei, B., Rock Anisotropy and the Theory of Stress Measurement, Springer-Verlag, Heidelberg (1983).
    (30)ASTM, Standard Test Method for Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete: ASTM Test Designation C457-98, Vol. 04.02 Concrete and Aggregates, ASTM, Philadelphia (2003).
    (31)Attewell, B., and Sandford, M. R., “Intrinsic shear strength of a brittle anisotropic rock;Ⅰ.Experimental and Mechanical Interpretation. Ⅱ.Textural data acquisition and processing. Ⅲ. Textural interpretation of failure,” International Journal of Rock Mechanics and Mining Sciences, Vol. 11, pp. 423-451 (1974).
    (32)Baddeley, A., and Jensen, E. B. V., Stereology for statisticians, Chapman and Hall, London (2005).
    (33)Barton, N. R., “The shear strength of rock and rock joints,” Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. Vol. 13, No. 10, pp. 1-24 (1976).
    (34)Batzle, M. L., Simmons, G., and Siegfried, R.W., “Microcrack closure in rock under stress: direct observation,” J. Geophys. Res., Vol. B12, pp. 7072-7090 (1980).
    (35)Bentz, D. P., and Garboczi, E. J., “Computer modeling of the interface transition zone – Microstructure and properties,” RILEM ETC report, Gaithersburg, pp. 349-385 (1999).
    (36)Bieniawski, Z.T., “Mechanism of brittle fracture rock; PartⅠ: Theory of the fracture process; PartⅡ: Experimental studies; PartⅢ: Fracture in tension and under long term loading,” International Journal of Rock Mechanics and Mining Sciences, Vol. 4, No. 4, pp. 395-430 (1967).
    (37)Bieniawski, Z.T., “Propagation of brittle fracture in rock,” Proceedings of the 10th Symposium on Rock Mechanics (AIME), New York, pp.409-427 (1972).
    (38)Borecki, M., and Kwasniewski, “Experimental and analytical studies on compressive strength of anisotropic rocks,” Proc. of 7th Plenary Scientific Session of the International Bureau of Rock Mechanics, Katowice, pp.23-49 (1981).
    (39)Brady, B. H. G., and Brown, E. T., Rock Mechanics:For Underground Mining, Chapman and Hall, London, (1993).
    (40)Brown, L. S., and Pierson, C. U., “Linear traverse technique for measurement of air in hardened concrete,” Journal of the American Concrete Institute, Vol. 22, pp. 117-723, Article 47-7 (1950).
    (41)Chen, W. F., and Saleeb, A. F., Constitutive Equations for Engineering Materials, Vol. 1:Elasticity and Modeling, John-Wiley, New York (1981).
    (42)Christensen, R. M., Mechanics of Composite Materials, John-Wiley, New York (1979).
    (43)Church, M.A., Mclean, D.G., and Wolcott, J.F., “River bed gravel : Sampling and analysis”, In Sediment Trasport in Gravel-bed River, edited by Thorne, C. R., Bathurst, J. C., and Hey, R. W., Wiley, Chichester, pp. 43-79 (1987).
    (44)David, C., Menendez, B., and Bernabe, Y., “The mechanical behaviour of synthetic sandstone with varying brittle cement content,” International Journal of Rock Mechanics and Mining Sciences, Vol. 35, No. 6, pp. 759-770 (1998).
    (45)Deere, D.U. and Miller, R.P., “Engineering classification and index properties of intact rock,” Air Force Laboratory Technical Report No. AFNL-TR-65-116, Albuquerque, NM. (1966).
    (46)Delesse, M. A., “Procédé mécanique pour déterminer la composition des roches,” Comptes Rendues de l’Académie des Sciences, Paris, Vol. 25, pp. 544-545 (1847).(間接引用自Baddeley, A. J., and Jensen, E. B. V., 2003)
    (47)Dictionary of Geology and Mineralogy, McGraw-Hill, New York (2003).
    (48)Donath, F. A., “Strength variation and deformational behavior in anisotropic rock.,” In State of Stress in the Earth’s Crust, Eds. Judd, W.R., Elsevier, Amsterdam, pp. 280-297 (1964).
    (49)Duveau, G., Shao, J. F., and Henry, J. P., “Assessment of some failure criteria for strongly anisotropic geomaterials,” Mechanics of Cohesive-Frictional Materials, Vol. 3, pp. 1-26 (1998a).
    (50)Duveau, G., and Shao, J. F., “A modified single plane of weakness theory for the failure of highly stratified rocks,” International Journal of Rock Mechanics and Mining Sciences, Vol. 35, No. 6, pp. 807-813 (1998b).
    (51)Fonseka, G. M., Murrell, S. A. F., and Barnes, P., “Scanning electron microscope and acoustic emission studies of crack development in rocks,” Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. Vol. 22, No. 5, pp. 273-289 (1985).
    (52)Glagolev, A. A., “On geometrical methods of quantitative mineralogic analysis of rocks,” Trans. Inst. Econ. Min.,, Vol. 59, pp. 1-47 (1933). (間接引用自Baddeley, A. J., and Jensen, E. B. V., 2003)
    (53)Goodman, R.E., Introduction to Rock Mechanics, 2nd ed, John Wiley and Sons, New York (1989).
    (54)Griggs, D. T., and Handin, J., “Observation on fracture and a hypothesis of earthquakes,” In Rock Deformation-A Symposium of Geol. Soc. America Mem. 79, Eds. Griggs, D. T., and Handin, J., pp. 347-373 (1960).(間接引用自Spencer, E. W., 1969)
    (55)Halpin, J. C., Primer on Composite Materials Analysis, Technomic Pub. Co., Inc, Lancaster, pp. 67-98 (1984)
    (56)Hashin, Z., “The elastic moduli of heterogeneous materials,” ASME, Journal of Applied Mechanics, Vol. 29, pp. 143-150 (1962).
    (57)Hashin, Z., and Shtrikman, S.,“On some variational principles in anisotropic and nonhomogeneous and elasticity,” Journal of the Mechanics and Physics of Solids, Vol. 10, pp. 335-342 (1962).
    (58)Heard, H. C., “Transition from brittle fracture to ductile flow in Solenhofen limestone as a function of temperature, confining pressure, and interstitial fluid pressure,” In Rock Deformation-A Symposium of Geol. Soc. America Mem. 79, Eds. Griggs, D. T., and Handin, J., pp. 193-226 (1960).(間接引用自Paterson, M. S., 1978)
    (59)Hershey, A. V., “The elasticity of an isotropic aggregate of anisotropic cubic crystals,” J. Appl. Mech., Vol.21, pp. 236 (1954).
    (60)Hill, R., The Mathematical Theory of Plasticity, Clarendon Press, Oxford (1950).
    (61)Hill, R., “A self-consistent mechanics of composite materials,” Journal of the Mechanics and Physics of Solids, Vol.13, pp. 213-222 (1965).
    (62)Hoek, E. and Brown, E.T., Underground Excavations in Rock, Institution of Mining and Metallurgy, London, pp.137-162 (1980).
    (63)Hoek, E., “Strength of jointed rock masses,” 23rd Rankine Lecture, Geotechnique, Vol.33, No. 3, pp. 187-223 (1983).
    (64)Hoek, E., and Brown, E. T., “The Hoek-Brown failure criterion, In Rock engineering for underground excavations,” Proc. of 15th Canadian rock mech. Symp., Eds. Curran, J. C., pp. 31-38 (1988).
    (65)Holt, R. M., Unander, T. E., and Kenter, C. J., “A modified single plane of weakness theory for the failure of highly stratified rocks,” Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., Vol. 35, No. 6, pp. 807-813 (1998).
    (66)Holmes, A., Petrographic Methods and Calculations, Thos. Murray and Co, London (1921).
    (67)Ibanez, W.D. and Kronenberg, A.K., “Experimental deformation of shale: Mechanical properties and microstructural indicators of mechanisms,” International Journal of Rock Mechanics and Mining Sciences, Vol. 30, No. 7, pp. 723-734 (1993).
    (68)Indraratna, B., “Development and application of a synthetic material to simulate soft sedimentary rocks,” Geotechnique, Vol. 30, No. 7, pp. 719-722 (1993).
    (69)ISRM, Rock Characterization Testing and Monitoring, Pergamon Press, Oxford (1981).
    (70)Jaeger, J.C., “Shear failure of anisotropic rocks,” Geol. Mag., Vol. 97, pp.65-72 (1960).
    (71)Jaeger, J. C., and Cook, N. G. W., Fundamental of Rock Mechanics, 3rd edition, Chapman & Hall, London (1979).
    (72)Johnston, I. W. and Choi, S. K., “A synthetic soft rock for laboratory model studies,” Geotechnique, Vol. 36, No. 2, pp. 251-263 (1986).
    (73)Jones, R. M., Mechanics of Composite Materials, Scripta Book Company, Washington, D. C. (1975).
    (74)Krumbein, W. C., and Pettijhon, F. J., Manual of sedimentary petrography, Appleton-Century Company, New York (1938).
    (75)Kuo, M. C., Tien, Y.M., and Chu, C.A., “Study of Failure Process and Failure Modes of Interstratified Rock Mass with an Emphasis on Specimen Preparation and Image Scanning.” The 6th North American Rock Mechanics Symposium, Houston, Texas, Paper No.584 (2004).
    (76)Kuo, M. C., Y.M. Tien, C.A. Chu, “Experimental Study of Failure Process and Failure Modes of Interstratified Rock Mass.” Proceedings of the 5th Asian Young Geotechnical Engineers Conference, Taipei, p.173-179 (2004).
    (77)Kwasniewski, M. A., “Mechanical behavior of anisotropic rocks,” In Comprehensive Rock Engineering, Vol. 1. Fundamentals, Eds. Hudson, J. A., Pergamon Press, Oxford, pp. 285-312 (1993).
    (78)Lama, R. D., and Vutukuri, V. S., Handbook on Mechanical Properties of Rocks VolumeⅡ: Testing Techniques and Results, Trans Tech Publications, Germany (1978).
    (79)Lekhnitskii, S. G., Theory of Elasticity of an Anisotropic Elastic Body, Translated by P. Fern, Holden-Day Inc., San Francisco (1963).
    (80)Lindquist, E. S., “The strength and deformation properties of mélange,” Ph.D. Dissertation, Department of Civil Engineering, University of California, Berkeley (1994).
    (81)Lindquist, E. S., “The mechanical properties of a physical model melange,” 7th International IAEG Congress, Rotterdam, pp. 819- 826 (1994).
    (82)Lindquist, E. S., and Goodman, R. E., “Strength and deformation properties of a physical model melange,” Proc.of 1st NARMS, Rotterdam, pp. 851-858 (1994).
    (83)Lindqvist, P.A, Lai, H.H. and Alm, O., “Indentation fracture development in rock continuously observed with a scanning electron microscope,” International Journal of Rock Mechanics and Mining Sciences, Vol. 21, No. 4, pp. 165-182 (1984).
    (84)McClintock, F. A., and Walsh, J. B., “Friction on Griffith cracks in rocks under pressure,” Proc. 4th Congr. Appl. Mech., Berkeley, pp.1015-1021 (1962).
    (85)McLamore, R., and Gray, K. E., “The mechanical behavior of anisotropic sedimentary rocks,” Journal of Engineering for Industry, Trans. of the ASME, Vol. 89, pp. 62-73 (1967).
    (86)McLaughlin, R., “A study of the differential scheme for composite materials,” International Journal of Engineering Science, Vol.15, pp. 237-244 (1977)
    (87)Medley, E. W., “The engineering characterization of mélanges and similar block-in-matrix rocks (Bimrocks),” Ph.D. Dissertation, Department of Civil Engineering, University of California, Berkeley (1994).
    (88)Medley, E. W., “Using stereological methods to estimate the volumetric proportions of blocks in melanges and similar block-in-matrix rocks (bimrocks),” 7th International IAEG Congress, Rotterdam, pp. 1031-1040 (1994).
    (89)Medley, E. W., and Goodman, R. E., “Estimating the block volumetric proportions of melanges and similar block-in-matrix rocks (bimrocks),” Proc. of 1st NARMS, Rotterdam, pp. 851-858 (1994).
    (90)Nemat-Nasser, S., and Hori, M., Micromechanics: Overall Properties of Heterogeneous Materials, Elsevier, Amsterdam (1993).
    (91)Niandou, H., Shao, J. F., Henry, J. P., and Fourmaintraux, D., “Laboratory investigation of the mechanical behavior of Tournemire shale,” International Journal of Rock Mechanics and Mining Sciences, Vol. 34, No. 1, pp. 3-16 (1997).
    (92)Nova, R., “The failure of transversely isotropic rocks in triaxial compression,” Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. Vol. 17, pp. 325-332 (1980).
    (93)Nolen-Hoeksema, R.C. and Gordon, R.B., “Optical detection of crack patterns in the opening-mode fracture of marble,” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 24, No. 2, pp. 135-144 (1987).
    (94)Olsson, W.A. and Peng, S.S., “Microcrack nucleation in marble,” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 13, pp. 53-59 (1976).
    (95)Omine, k., Yoshida, N., and Ochiai, H., “Stress-strain behavior of mixtures with two different elastic materials,” Fukuoka University Review of Technological Sciences, Vol. 51, pp. 83-93 (1993).(間接引用自Yasufuku et al., 2001)
    (96)Pariseau, W.G., “Plasticity theory for anisotropic rocks and soils,” Proceedings of the 10th Symposium on Rock Mechanics (AIME), New York, pp.267-295 (1972).
    (97)Paterson, M. S., Experimental Rock Deformation: The Brittle Field, Springer-Verlag, Berlin (1978).
    (98)Qiao, C. S., “The fracture mechanism of stratiform rocks under uniaxial compression,” International Journal of Rock Mechanics and Mining Science, Vol. 41, No. 3, paper No.1A 17 (2004).
    (99)Ramamurthy, T., Rao, G. V., and Rao, K. S., “A strength criterion for rocks,” In Proc. Indian Geotech. Conf., Roorkee, Vol. 1, pp.59-64 (1985).(間接引用自Ramamurthy, 1993)
    (100)Ramamurthy, T., “Strength and modulus responses of anisotropic rocks,” In Comprehensive Rock Engineering, Vol. 1. Fundamentals, Pergamon Press, Oxford, pp.313-329 (1993).
    (101)Rosiwal, A., “Ueber geometrische Gesteinsanalysen,” Verhandlungen der Kaiserlich-Königlichen Geologischen Reichsanstalt Wien, pp. 143-175 (1898). (間接引用自Baddeley, A. J., and Jensen, E. B. V., 2003)
    (102)Rummel, F., “A review of fracture criteria of brittle rock,” In Rock Mechanics, Eds. Muller, L., Springer-Verlag, New York, pp. 72-84 (1972).
    (103)Salamon, M. D. G., “Elastic moduli of a stratified rock mass,” International Journal of Rock Mechanics and Mining Science, Vol. 5, pp. 519-527 (1968).
    (104)Santarelli, F.J. and Brown, E.T., “Failure of three sedimentary rocks in triaxial and hollow cylinder compression tests,” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 26, No. 5, pp. 401-413 (1989).
    (105)Stimpson, B., “Modeling materials of engineering rock mechanics,” International Journal of Rock Mechanics Mining Sciences, Vol.7, pp. 77-121 (1970).
    (106)Thomson, E., “Quantitative microscopic analysis,” Journal of Geology, Vol. 38, pp. 193-222 (1930). (間接引用自Baddeley, A. J., and Jensen, E. B. V., 2003)
    (107)Tien, Y. M. and Tsao, P. F., “Preparation and mechanical properties of artificial transversely isotropic rock,” International Journal of Rock Mechanics and Mining Sciences, Vol. 37, pp. 1001-1012 (2000).
    (108)Tien, Y. M., and Kuo, M. C., “A failure criterion for transversely isotropic rocks,” International Journal of Rock Mechanics and Mining Sciences, Vol. 38, No. 3, pp. 399-412 (2001).
    (109)Tien, Y. M., and Chu, C. A., “Rotary scanner for cylindrical specimens,” Proceedings of the 5th Asian Young Geotechnical Engineers Conference, Taipei, Taiwan, pp. 181-186 (2004).
    (110)Vutukuri, V. S., Lama, R. D., and Saluja, S. S., Handbook on Mechanical Properties of Rocks VolumeⅠ: Testing Techniques and Results, Trans Tech Publications, Germany (1974).
    (111)Walsh, J. B., and Brace, W. F., “A fracture criterion for brittle anisotropic rock,” Journal of Geophysical Reserach, Vol. 69, No. 16, pp. 3449-3456 (1964).
    (112)Wardle, L. J., and Gerrard, C. M., “The ‘equivalent’ anisotropic properties of layered rock and soil mases,” Rock Mechanics, Vol. 4, pp. 155-175 (1972).
    (113)Wawersik, W. R., and Fairhurst, C, “A study of bruttle rock fracture in laboratory compression experiments,” Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., Vol. 7, pp. 561-575 (1970).
    (114)Wu, T. T.,“The effect of inclusion shape on the elastic moduli of a two-phase materials,” International Journal of Solid and Structures, Vol. 2, pp. 1-8 (1966).
    (115)Xie, H., Fractals In Rock Mechanics, A. A. Balkema, Rotterdam, 1993.
    (116)Zhao, Y.H. Huang, J.F. and Wang, R., “SEM study of fracture development in rock materials.,” Proceedings of the Conference on Fracture and Jointed Rock Masses. California, pp.495-499 (1995).
    (117)Zimmerman, R. W., “Hashin-Shtrikman bounds on the Poisson ratio of a composite material,” Mechanics Research Communications, Vol. 19, No.6, pp. 563-569 (1992).
    Advisor
  • Yong-Ming Tien(田永銘)
  • Files
  • 88322067.pdf
  • approve immediately
    Date of Submission 2005-07-22

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.