Title page for 88322045


[Back to Results | New Search]

Student Number 88322045
Author Ming-Shen Gang(高銘伸)
Author's Email Address No Public.
Statistics This thesis had been viewed 1907 times. Download 1217 times.
Department Civil Engineering
Year 2000
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title none
Date of Defense 2001-07-11
Page Count 75
Keyword
  • 牛頓-拉弗森法
  • 非線性代數方程式
  • Abstract When solving nonlinear equations the Newton-Raphson method is used by many people . But when we use the Newton-Raphson method to solve nonlinear equations , we must give the initial value close to the solution . This research studies a new method which is globally convergent. The new method improves the Newton-Raphson method . Then we can solve nonlinear equations by giving the initial value which is not close to the solution. We also compare the velocity of the new method with other globally convergent methods .
    Table of Content _________________________________________________________________頁次
    摘要………………………………………………………………………………..I
    英文摘要…………………………………………………………………………..II
    目錄………………………………………………………………………………..III
    表目錄……………………………………………………………………………..IV
    圖目錄……………………………………………………………………………..V
    第一章緒論………………………………………………………………………..1
    1-1 研究動機與目的………………………………………………………..1
    1-2 研究方法與步驟. ……………………………………………………..2
    1-3 論文內容………………………………………………………………..4
    第二章迭代法的介紹……………………………………………………………..5
    2-1 牛頓法…………………………………………………………………..5
    2-2 牛頓-拉弗森法………………………………………………………….8
    2-3 Broyden’s擬牛頓法..………………………………………………….10
    2-4 牛頓下山法……………………………………………………………..12
    2-5 最陡下降法……………………………………………………………..17
    第三章座標平移法………………………………………………………………..21
    3-1 理論介紹………………………………………………………………..21
    3-2 實例分析與說明………………………………………………………..25
    第四章宏觀收斂迭代法的比較…………………………………………………..30
    4-1 收斂判斷………………………………………………………………..30
    4-2 宏觀收斂迭代法的比較(1)…………………………………………...31
    4-3 宏觀收斂迭代法的比較(2)…………………………………………….41
    4-4 牛頓下山法的改良……………………………………………………..51
    4-5 牛頓法與最陡下降法的比較…………………………………………..61
    第五章結論………………………………………………………………………..71
    參考文獻…………………………………………………………………………….74
    Reference 1.林聰悟,工程基本程式,新學識文教出本中心,1981年。
    2.Kuo S.S. , Computer applications of numerical methods, Additions-Wesley Pub. Co. , 1972.
    3.Brent R.P. , Some efficient algorithms for solving systems of nonlinear equations .SIAM J. Numer. Anal. ,10 (1873)327-344.
    4.Brown K.M., A quadratically convergent method for solving simultaneous nonlinear equations. Ph.D. Diss. , Purdue U., Lafayette , Ind.,1966.
    5.Brown K.M. and Dennis J.E. , On the second order convergence of Brown’s derivative —free method for solving simultaneous nonlinear equations. Tech. Rep. 71-7, Dept. Comptr. Sci., Yale U. New Haven ,CONN.,1971.
    6.Broyden C.G. ,A class of methods for solving nonlinear simultaneous equations, Math. Comp.,19(1965)577-593.
    7.Gay D.M., Brown’s method and some generalizations , with applications to minimization problems. Ph. D. Diss., Cornell U. Ithaca N.Y.,1975.
    8.Broyden C.G. , A new double-rank minimization algorithm , Notice Amer . Math. Soc. , 16(1969)670.
    9.Flether R. , A new approach to variable metric algorithms, Comput. J. 13(1970)317-322.
    10.Goldford D. , A family of variable metric methods derived by variational means , Math.Comp.,24(1970)23-26.
    11.Shamo D.F., Conditioning of Quasi-Newton methods for function minimization , Math. Comp. ,24(1970)647-656.
    12.Dennis J.E. and More J.J. , Quasi-Newton methods , matiration and theory. SIAM Review, 19(1977)46-89.
    13.More J.J. and Cosnard M.Y., Numerical solution of nonlinear equations . ACM Trans. Math. Software , 5(1979)64-85.
    14.Hirlch M.W. and Small S. , On the algorithm for solving equation f(x)=0.Comm.pure Appl.Math.,32(1979)281-312.
    15.Allgower E. and Georg K. , Simplical and continuation method for approximation fixed points and solutions to systems of equations . SIAM Review , 22(1980)28-84.
    16.Traub J.F., Iterative methods for the solutions of equations . Chelsea Pub. Co. , New York ,1964.
    17.Schroder , Ueber unendlich viele Aalgorithm zur aufloesung der Gleichungen . Math. Ann. 2(1870)317-365.
    18.馮果忱,非線性方程組迭代解法,上海科學技術出版社。
    19.秦林祥、楊泰敏,計算方法,兵器工業出版社。
    20.袁慰平、張令敏、黃新芹、聞震初,計算方法與實習,暨南大學出版社。
    21.陳祺源,計算塑性力學的新方法,中央大學碩士論文,1994。

    22.林義昌,牛頓型方法二次微分效應,中央大學碩士論文,1999。

    23.周宏勳,牛頓型方法二次項效應,中央大學碩士論文,2000。
    Advisor
  • Hin-Chi Lei(李顯智)
  • Files
  • 88322045.pdf
  • approve immediately
    Date of Submission 2001-07-11

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.