Title page for 88322011


[Back to Results | New Search]

Student Number 88322011
Author Zhuo-Gan Wu(吳卓岡)
Author's Email Address No Public.
Statistics This thesis had been viewed 1653 times. Download 860 times.
Department Civil Engineering
Year 2000
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title none
Date of Defense 2001-07-06
Page Count 161
Keyword
  • amplification
  • peak ground acceleration
  • Abstract In this research, we study the site amplification in Taipei basin based on the variation of PGA and earthquake spectrum. The analysis includes two parts. First, data from several downhole arrays have been investigated to understand the variation of ground motion and site amplification at surface. Second, we study the characteristics of ground motion at surface in Taipei basin during recent 6 strong earthquakes.
    The results of downhole data show that, in general, peak ground acceleration (PGA) decreases with depth and can reach maximum at surface. Besides, the records of surface accelerometers are compared and found that PGA-value could greater than two times even within a radius of 60 meters.
    The shape of response spectrum is more significant with larger magnitude and longer epicenter distance. The results of two spectral ratio methods indicate that the trends of ratio of response spectrum (RRS) and ratio of Fourier amplitude spectrum (RFAS) are similar and both RRSmax and the first peak of RFAS occur at about the same frequency.
    On the other hand, six seismic records of magnitude greater than 6 are selected for study site amplification in Taipei Basin. The distributions of PGA are observed that larger PGA-value are usually found at east and south corner of the basin. It could be associated with thickness of soft clay in the shallow soil layers at these areas. Based on the amplification of response spectrum, we classified the Taipei basin strong motion stations into four types. Type one : the noticeable amplification peak of acceleration response spectrum can be observed. Type two : the stations locate at the Taipei basin edges, and the acceleration response spectra of this type are similar to that of our selected reference-site. Type three : most stations locate at the south part of the basin, the amplification of response spectra of this type are not obvious as that of type one and RRS-value hold constant when period is longer than 1.0sec. In some stations, the trends of amplification of the two horizontal components are quite different and difficult to describe the characteristics. For this reason, we temporarily classified those stations into type four and suggested to be further studied.
    Table of Content 中文摘要
    英文摘要
    誌 謝
    目 錄
    圖目錄
    表目錄
    符號說明
    第一章 緒 論1
    1.1 研究動機1
    1.2 研究目的2
    1.3 論文內容2
    第二章 文獻回顧4
    2.1 尖峰加速度的放大與折減4
    2.2 反應譜的變化7
    第三章 台北盆地概述12
    3.1 地形與地質構造12
    3.2 台北盆地相關研究回顧12
    3.2.1 基盤面與松山層底部之形貌13
    3.2.2 松山層剪力波速度構造14
    第四章 研究原理及分析方法17
    4.1 基本理論17
    4.1.1 反應譜17
    4.1.2 富氏譜19
    4.1.3 場址放大效應21
    4.2 分析內容與步驟24
    4.2.1 資料來源24
    4.2.2 資料處理24
    4.2.3 分析內容26
    第五章 分析結果與討論28
    5.1 下孔強震儀陣列之分析結果28
    5.1.1 時間域分析28
    5.1.2 頻率域分析29
    5.1.3 反應譜比(RRS)與富氏振幅譜比(RFAS)的比較31
    5.2 台北盆地各測站記錄之分析結果34
    5.2.1 地表尖峰加速度的分布34
    5.2.2 頻譜比值(RRS與RFAS)的比較36
    5.2.3 反應譜放大特性的比較37
    5.2.4 松山層厚度與基盤深度的影響39
    第六章 結論與建議40
    6.1 結 論40
    6.2 建議與展望41
    參考文獻 43
    Reference 1.Beresnev, I.A., and Wen, K.L., “The accuracy of soil response estimates using soil-to-rock spectral ratios,” Bulletin of Seismological Society of America, Vol. 86, No.2, pp.519-523 (1996).
    2.Biot, M.A., “A mechanical analyzer for the prediction of earthquake stresses,” Bulletin of Seismological Society of America, Vol.31, pp. 151-171 (1941).
    3.Borcherdt, R.D., “Effects of local geology on ground motion near San Francisco Bay,” Bulletin of Seismological Society of America, Vol.60, No.1, pp. 29-61 (1970).
    4.Borcherdt, R.D., “Estimates of site-dependent response spectra for design (methodology and justification),” Earthquake Spectra, Vol. 10, No.4, pp.617-653 (1994).
    5.Chang, C.T., Hwang, J.H., “Study on variation of PGA with soil overburden,” Eleven Southeast Asian Geotechnical Conference, Singapore, pp.501-506 (1993).
    6.Chopra, A.K., Dynamics of Structures - A Primer, Earthquake Engineering Research Institute ,Berkeley, California, pp.13-50(1981).
    7.Crouse, C.B., and McGuire, J.W., “Site response studies for purpose of revising NEHRP seismic provisions,” Earthquake Spectra, Vol. 12, No.3, pp.65-87 (1996).
    8.Dobry, R., “Soil properties and earthquake response,” Proc., X European Conference of Soil Mechanics and Foundation Engineering, Vol. IV, Florence, Italy, pp.1171-1187 (1991).
    9.Dobry, R., Borcherdt, R.D., Crouse, C.B, Idriss, I.M., Joyner, W.B., Martin, G.R., Power, M.S., Rinne, E.E., and Seed, R.B., “New site coefficient and site classification system used in recent building seismic code provisions,” Earthquake Spectra, Vol.16, No.1, pp.41-67 (2000).
    10.Dobry, R., Martin, G.M., Parra, E., and Bhattacharyya, A., “Development of site-dependent ratios of elastic response spectra (RRS) and site categories for building seismic codes,” Proc. of the 1992 NCEER/SEAOC/BSSC Workshop on Site Response during Earthquakes and Seismic Code Provisions, University of Southen California, Los Angels, November 18-20 (1992).
    11.Dobry, R., Ramos, R., and Power, M.S., “Site factors and site categories in seismic codes,” Technical Report MCEER-99-0010, Multidisciplinary Center Earthquake Engineering Research, University at Buffalo, New York (1999).
    12.Field, E.H, and Jacob, K.H., “A comparison and test of various site-response estimation technique, including three that are not reference-site dependent,” Bulletin of Seismological Society of America, Vol.85, No.4, pp. 1127-1143 (1995).
    13.Hayashi, S., H. Tsuchida, and E. Kurata, “Average response spectra for various subsoil conditions,” 3rd Joint Meeting, U.S.-Japan Panel on Wind Seismic Effects, UJNR, Tokyo, May 10-12 (1971).
    14.Housner, G.W., “An investigation of the effects of earthquakes on buildings,” Ph.D. Thesis, California Institute of Technology, Pasadena, California (1941).
    15.Housner, G.W., and Jennings, P.C., Earthquake Design Criteria, Earthquake Engineering Research Institute, Berkeley, California, pp.13-50 (1982).
    16.Huang, W.G., Liu, C.C., and Yeh, Y.T., “Strong-motion earthquake records on the 17 July 1998, in LSST array, Hualien,” Institute of Earth Sciences Academia Sinica Republic of China, IESER98-001, (1998).
    17.Idriss, I.M., “Response of soft soil sites during earthquakes,” Proceedings, a Memorial Symposium to Honor Processor H.B. Seed, University of California, Berkeley (1990).
    18.Joyner, W.B., Fumal, T.E., and Glassmoyer, G., “Empirical spectral response ratios for strong motion data from the 1989 Loma Prieta, California, Earthquake,” Proceedings of the NCEER/SEAOC/BSSC Workshop on Site Response During Earthquakes and Seismic Code Provisions, University of Southern California, Los Angels, November 18-20 (1994).
    19.Kramer, S.T., Geotechnical Earthquake Engineering, Prentice-Hall, Washington, pp.54-345 (1996).
    20.Loh, C.H., Hwang, J.W., and Shin ,T.C. , “Observed variation of earthquake motion across a basin ─ Taipei City,” Earthquake Spectra, Vol.14 ,No.1, pp.115-133 (1998).
    21.Lussou, P., Bard, P.Y., and Cotton, F., “Seismic design regulation codes: contribution of K-NET data to site effect evaluation,” Journal of Earthquake Engineering, Vol.5, No.1, pp.13-33 (2001).
    22.Mohraz, B., “A study of earthquake response spectra for different geological conditions,” Bulletin of Seismological Society of America, Vol.66, No.3, pp. 919-935 (1976).
    23.Nigam, N.C., Jennings, P.C., Digital calculation of response spectra from strong-motion earthquake records, Earthquake Engineering Research Laboratory, Pasadena, California, pp.4-26 (1968).
    24.Okawa, I., Kashima,T., and Kitagawa,Y., “Site effect characterization using records of dense strong motion earthquake seismometer array in Sendai,” Earthquake Engineering Tenth World Conference, Japan, pp.1009-1014 (1992).
    25.Riepl, J., Bard, P.Y., Hatzfeld, D., Papaioannou, C., and Nechtschein, S., “Detailed evaluation of site-response estimation methods across and along the sedimentary valley of Volvi (EURO-SEISTEST),” Bulletin of Seismological Society of America, Vol.88, No.2, pp.488-502 (1998).
    26.Roesset, J.M., “Soil amplification in earthquakes,” Numerical Methods in Geotechnical Engineering, edited by Desai C.S. and Christian J.T., Chapter 19, McGraw Hill, New York, pp.639-682 (1977).
    27.Seed, H.B., “Design provision for assessing the effect of local geology and soil conditions on ground and building response during Earthquakes,” ASCE/SEAONC professional development committee (1975).
    28.Seed, H.B., Ugas, C., and Lysmer, J., “Site-dependent spectra for earthquake-resistant design,” Bulletin of Seismological Society of America, Vol. 66, No.1, pp.221-243 (1976).
    29.Steidl, J.H., Tumarkin, A.G., and Archuleta, R.J., “What is a reference site? ” Bulletin of Seismological Society of America, Vol.86, No.6, pp. 1733-1748 (1996).
    30.Wen, K.L., “Nonlinear soil response in ground motions,” Earthquake Engineering and Structural Dynamics, Vol.23, No.6, pp.599-608 (1994).
    31.Wen, K.L., Beresnev, I.A., and Yeh, Y.T., “Check on nonlinear site response in strong ground motions by using the spectral ratio method,” Proceedings of the Third ROC and Japan Joint Seminar on Natural Hazards Mitigation, National Cheng-Kung University, Tainan, Taiwan, pp.89-101 (1993).
    32.Wen, K.L., Yeh, Y.T., “Analysis of peak ground motions observed by two dense arrays,” Journal of the Geological Society of China, Vol.35, No.2, pp.115-134 (1992).
    33.王千翠,「羅東地區加速度反應譜特性」,碩士論文,國立中央大學地球物理研究所,中壢(1991)。

    34.王乾盈、孫志財,「台北盆地震測地層解釋」,經濟部中央地質調查所特刊,第11號,第273-292頁(1994)。
    35.王執明、鄭穎敏、王源,「台北盆地地質與沉積物研究」,台灣礦業,第30卷,第4期,第305-380頁(1978)。
    36.吳偉特,「台北盆地土壤之剪力模數與阻尼比特性」,土木水利季刊,第10卷,第1期,第69-78頁(1983)。
    37.李亦亨,「台北盆地松山層剪力波速度構造」,碩士論文,國立中央大學地球物理研究所,中壢(1995)。
    38.李俊延,「台北盆地S波速度構造」,碩士論文,國立中央大學地球物理研究所,中壢(1998)。

    39.李咸亨、吳志明,「台北盆地土壤動態性質研究(III)-下井探測法與與剪力波速度迴歸分析探討」,行政院國家科學委員會,防災科技研究報告79-04號,中壢(1990)。
    40.林昭儀,「以反應譜研究台北盆地之強地動場址效應」,碩士論文,國立中央大學地球物理研究所,中壢(1997)。

    41.洪如江,「台北盆地各土壤之物理特性」,工程學刊,第10期,第1-24頁(1965)。
    42.陳正興,「未固結土壤對地震波放大效應之實例研究」,地工技術,第30期,第32-59頁(1990)。
    43.陳正興、陳立言、陳光靖,「台灣地區高速鐵路覆蓋土層加速度放大係數之研究」,國家地震工程研究中心,台北(1994)。
    44.陳立言,「台北盆地土層放大效應之研究」,博士論文,國立台灣大學土木工程研究所,台北(1994)。
    45.彭志雄、鄧屬予與袁彼得,「台北盆地岩相特徵」,經濟部中央地質調查所特刊,第11號,第67-99頁(1999)。
    46.彭瀚毅,「台北盆地場址效應之研究」,博士論文,國立中央大學地球物理研究所,中壢(1998)。

    47.黃兆聖,「盆地效應對地震需求之探討─實測資料分析」,碩士論文,國立台灣大學土木工程研究所,台北(1997)。

    48.溫國樑,「羅東地區之強震地動特性」,博士論文,國立中央大學地球物理研究所,中壢(1987)。

    49.廖啟雯,「地下地質分散式資料庫建置與應用-以台北盆地為例」,碩士論文,國立中央大學應用地質研究所,中壢(1998)。

    50.謝昭輝、謝盛雄、林昭銘,「淺層震測與井測法應用於台北盆地之調查研究」,經濟部中央地質調查所特刊,第11號,第253-272頁(1994)。
    Advisor
  • Jing-Hung Hwang(黃俊鴻)
  • Files
  • 88322011.pdf
  • approve immediately
    Date of Submission 2001-07-06

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.