Title page for 86322010


[Back to Results | New Search]

Student Number 86322010
Author Lin Yen(林晏吉)
Author's Email Address No Public.
Statistics This thesis had been viewed 408 times. Download 11 times.
Department Civil Engineering
Year 1998
Semester 2
Degree Master
Type of Document Master's Thesis
Language zh-TW.Big5 Chinese
Title
Date of Defense
Page Count 147
Keyword
  • alkali-aggregate reaction
  • alkali-carbonate reaction
  • alkali-silica reaction
  • andesite
  • fly ash
  • pessimum
  • sandstone
  • slag
  • Abstract This thesis is mainly aimed to study the causes of alkali-aggregate reaction in East Taiwan, divided into two topics, one is to discuss the causes of alkali-aggregate reaction in Hua-Lien. According to ASTM testing specifications, using the aggregates from Hua-Lien river and Mugua river for the experiments of alkali-silica reaction and alkali-carbonate reaction to test its` alkali reactivity. Another is to discuss the causes of alkali-aggregate reaction of andesite in I-Wan and sandstone in Ji-Chi. According to ASTM testing specifications, for reconfirming the alkali reaction and the efficiencies of prevention expansion of alkali-aggregate reaction by using pozzolan materials (fly ash and slag) to replace cement partly, the research of alkali-silica reaction can be examined. By different alkali contents, grain sizes, dry-wet cycles, partly andesite replacing Hua-Lien river and Mugua river`s aggregates and partly pozzolan materials replacing the cement conditions, the expansion causes by alkali-aggregate reaction in each condition are discussed.    The results indicate that the aggregates in Hua-Lien river and Mugua river are presented alkali-silica reaction mainly. According to ASTM C1260(Mortar-Bar Method), the aggregates in Hua-Lien were considered deleterious. Besides, partly andesite replacing the aggregates in Hua-Lien makes the expansion increase prominently. The existence of pessimum can be found in the experiment of changing grain sizes of aggregates and in the experiment of partly andesite replacing aggregates in Hua-Lien. Under dry-wet cycles, Alkali-aggregate reaction will be accelerated. By utilizing fly ash and slag to partly replace cement reduces expansion of alkali-aggregate reaction prominently, especially fly ash.
       All at once, field investigations also were held for cases which seem like alkali-aggregate reaction. This research takes focus on the precast concrete blocks in Hua-Lien. Seawater is proved to foment the processing of alkali-aggregate reaction. And the most common and serious deterioration cases are precast concrete blocks and sea defenses in sea shore.
    Keyword: alkali-aggregate reaction, alkali-silica reaction, alkali-carbonate reaction, pessimum, dry-wet cycles, andesite, sandstone, fly ash, slag, East Taiwan
    Table of Content 目 錄
    第一章 緒論1
    1-1 研究動機與目的1
    1-2 研究範圍2
    1-3 研究方法3
    1-4 論文架構3
    第二章 文獻回顧4
    2-1 混凝土劣化因素之探討4
    2-2 鹼-骨材反應概述6
    2-3 鹼-骨材反應之分類6
    2-3-1 鹼-氧化矽反應6
    2-3-2 鹼-碳酸鹽反應7
    2-3-3 鹼-矽酸鹽反應7
    2-3-4 其他鹼─骨材反應-8
    2-4 鹼-氧化矽反應之探討8
    2-4-1 氧化矽反應之化學機制9
    2-4-2 鹼-氧化矽反應之膨脹機制13
    2-4-3 鹼-氧化矽反應相關機制16
    2-4-4 悲極值(pessimum)之探討17
    2-5 鹼-碳酸鹽反應之探討21
    2-5-1 鹼-碳酸鹽之化學反應21
    2-5-2 鹼-碳酸鹽反應相關學說22
    2-6 影響鹼-骨材反應膨脹的因素23
    2-6-1 反應性骨材的影響23
    2-6-2 孔隙溶液的影響26
    2-6-3 鹼的影響26
    2-6-4 溫度的影響28
    2-6-5 水的影響29
    2-6-6 水灰比的影響30
    2-7 鹼-骨材反應的症狀30
    2-7-1 外觀現象30
    2-7-2 內部現象32
    2-8 抑制鹼-骨材反應的方法34
    2-9 鹼-骨材反應判斷方式37
    第三章 試驗計劃與方法38
    3-1 試驗規劃38
    3-2 試驗材料39
    3-3 試驗方法及步驟40
    3-3-1 骨材反應性潛能化學試驗(ASTM C-289)40
    3-3-1-1 儀器與試劑41
    3-3-1-2 試驗步驟44
    3-3-2 水泥砂漿棒膨脹試驗(ASTM C227)49
    3-3-2-1 儀器與條件49
    3-3-2-2 試驗步驟50
    3-3-2-3 試驗條件及方式54
    3-3-3 水泥砂漿棒加速膨脹試驗(ASTM C1260)55
    3-3-3-1 儀器與條件55
    3-3-3-2 試驗步驟56
    3-3-3-3 試驗條件與方式58
    3-3-4 混凝土角柱試驗(ASTM C1293 & C1105)59
    3-3-4-1 試驗相關規定59
    3-3-4-2 試驗步驟59
    3-3-4-3 試驗條件及方法60
    3-3-5 岩體圓柱試驗(ASTM C586)62
    3-3-5-1 要義與應用62
    3-3-5-2 試驗步驟63
    3-3-5-3 試驗條件及方法64
    第四章 試驗結果及分析65
    4-1 前言65
    4-2 ASTM C289骨材反應性潛能化學試驗67
    4-3 花蓮地區鹼─骨材反應之成因探討68
    4-3-1 鹼─碳酸鹽反應(ACR)試驗70
    4-3-1-1 岩體圓柱試驗(ASTM C586)71
    4-3-1-2 混凝土角柱試驗(ASTM C1105)74
    4-3-2 鹼─氧化矽反應(ASR)試驗76
    4-3-2-1 水泥砂漿棒加速試驗(ASTM C1260)78
    4-3-2-2 水泥砂漿棒試驗(ASTM C227)91
    4-3-2-3 混凝土角柱試驗(ASTM C1293)96
    4-4 東部海岸斑狀安山岩及磯崎砂岩鹼─骨材反應成因探討104
    4-4-1 鹼─氧化矽反應(ASR)試驗106
    4-4-1-1 水泥砂漿棒加速試驗(ASTM C1260)106
    4-4-1-2 混凝土角柱試驗(ASTM C1293)117
    4-5 現地案例調查125
    第五章 結論與建議138
    5-1 結論138
    5-2 建議140
    參考文獻142
    附錄147
    ASTM C1260水泥砂漿棒加速試驗數據第1頁
    ASTM C227水泥砂漿棒膨脹試驗數據第13頁
    ASTM C1293(ASR)混凝土角柱試驗數據第16頁
    ASTM C1105(ACR)混凝土角柱試驗數據第19頁
    ASTM C586岩體圓柱試驗數據第19頁
    ASTM C1260水泥砂漿棒加速試驗之試體裂縫型式第20頁
    Reference 本文之參考文獻排列格式,中文部份按照第一作者之姓氏筆劃由小至大,英文部份按照英文字母順序排列。
    1. 小野紘一, 川村滿紀, 田村 博, 中野錦一, 「鹼—骨材反應」,(1986).
    2. 王櫻茂, 吳振成, 楊宏儀, 田永銘, 陳裕新, 「台灣地區鹼-骨材反應特性之研究」, 行政院國科會專題研究報告, NSC78-0410-E006-20, 共98頁(1989).
    3. 王櫻茂, 吳振成, 楊宏儀, 田永銘, 許智能, 「以普蜀蘭混合材料防制鹼-骨材反應(一)」, 行政院國科會專題研究報告, NSC79-0410-E006-32, 共98頁(1990).
    4. 王櫻茂, 楊宏儀, 田永銘, 許智能, 「以普蜀蘭混合材料防制鹼-骨材反應(二)」, 行政院國科會專題研究報告, NSC80-0410-E006-27, 共101頁(1991).
    5. 王淑慧, 「台灣地區岩石之鹼—骨材反應潛能研究」, 碩士論文, 國立中央大學應用地質研究所, 中壢 (1999).
    6. 交通部台灣區國道新建工程局, 「台灣西部地區砂石料源鹼質反應調查研究」, 共108頁 (1993).
    7. 林炳炎, 「飛灰用在混凝土中」, 現代營建雜誌社, 共331頁 (1991).
    8. 陳仁達, 「花東地區鹼—骨材反應及防治方法」, 碩士論文, 國立中央大學土木工程研究所, 中壢 (1998).
    9. 陳清泉, 陳振川, 「爐石為水泥熟料與填加料對混凝土特性影響之文獻及國外現況調查研究」, 財團法人台灣營建研究中心研究報告, TR 76004, 共192頁 (1987).
    10. 陳裕新, 「台灣地區鹼—骨材反應特性之研究」, 碩士論文, 國立成功大學土木工程研究所, 台南 (1989).
    11. 楊世和, 「台灣東部反應性骨材之探討及分析」, 碩士論文, 國立中央大學土木工程研究所, 中壢 (1997).
    12. 謝文凱, 「抑制鹼—骨材反應之基礎研究」, 碩士論文, 國立中央大學土木工程研究所, 中壢 (1997).
    13. ASTM C 227-90, “Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations (Mortar-Bar Method)” , Annual book of ASTM Standards, pp. 125-129 (1990).
    14. ASTM C 289-94, “Standard Test Method for Potential Alkali-Silica Reactivity of Aggregate (Chemical Method)”, Annual book of ASTM Standards, pp.156-162 (1994).
    15. ASTM C 586-92, “Standard Test Method for Potential Alkali Reactivity of Carbonate Rocks for Concrete Aggregate (Rock Cylinder Method)”, Annual book of ASTM Standards, pp.282-285 (1992).
    16. ASTM C 1105-95, “Standard Test Method for Length Change of Concrete Due to Alkali-Carbonate Rock Reaction,” Annual book of ASTM Standards, pp.566-569 (1995).
    17. ASTM C 1260-94, “Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method)”, Annual book of ASTM Standards, pp.644-647 (1994).
    18. ASTM C 1293-95, “Standard Test Method for Concrete Aggregates by Determination of Length Change of Concrete Due to Alkali-Silica Reaction,” Annual book of ASTM Standards, pp.648-653 (1995).
    19. Chatterji,S., “Mechanisms of Alkali-Silica Reaction and Expansion, ” 8th International Conference on Alkali-Aggregate Reaction, Japan, pp101-106 (1989).
    20. Collins, R. J. and P. D. Bareham, “Alkali-Silica Reaction: Suppression of Expansion Using Porous Aggregate,” Cement and Concrete Research, Vol.17, pp.89-96 (1987).
    21. Davis, C.E.S., “XVIII. The Effect of Soda Content and of Cooling Rate of Portland Cement Clinker on Its Reaction with Opal in Mortar, ” Australian Journal of Applied Science, pp123-131 (1951).
    22. Dent Glasser,L.S., “Osmotic Pressure and the Swelling of Gels, ” Cement and Concrete Research, Vol.9,Iss.4, pp.515-517 (1979).
    23. Diamond,S., “A Review of Alkali-Silica Reaction and Expansion Mechanism,Alkalis in Cement and in Concrete Pore Solutions, ” Cement and Concrete Research, Vol.5, pp.329-346 (1975).
    24. Diamond,S., “A Review of Alkali-Silica Reaction and Expansion Mechanism,Reactive Aggregate, ” Cement and Concrete Research, Vol.6, pp.549-560 (1976).
    25. Diamond,S and N.Thaulow, “A Study of Expansion Due to Alkali-Silica Reaction as Conditioned by the Grain Size of the Reactive Aggregate, ” Cement and Concrete Research, Vol.4, pp.591-607 (1974).
    26. Diamond,S., “ASR-Another Look at Mechanisms, ” 8th International Conference on Alkali-Aggregate Reaction, Japan, pp.83-94 (1989).
    27. Duchesne, J. and M. A. Berube, “ The Effectiveness of Supplementary Cementing Materials in Suppressing Expansion Due to ASR: Another Look at the Reaction Mechanisms Part1: Concrete Expansion and Portlandite Depletion,” Cement and Concrete Research, Vol.24, pp.73-82 (1994a).
    28. Duchesne, J. and M. A. Berube, “ The Effectiveness of Supplementary Cementing Materials in Suppressing Expansion Due to ASR: Another Look at the Reaction Mechanisms Part2: Pore Solution Chemistry,” Cement and Concrete Research, Vol.24, pp.221-230 (1994b).
    29. Eglinton,M.S., I.E. Higginbottom and G.S. Pettifer, “An Unfamiliar Alkali-Aggregate Reaction from Trimidad,” Quarterly Journal of Engimeering Geology,Vol.27, pp.363-373(1994).
    30. Glasser, L. S. D. and N. Kataoka ,“The Chemistry of Alkali-Aggregate reaction, ” Cement and Concrete Research, Vol.11 ,pp.1-9 (1981).
    31. Grattan-Bellew,P.E., “Laboratory Evaluation of Alkali-Silica Reaction in Concrete from Saunders Generating Station,” ACI Material Journal/March-April,pp.137-149(1995).
    32. Hobbs, D. W. and W.A.Gutteridge, “Particle Size of Aggregate and It’s Influence upon the Expansion Caused by the Alkali-Silica Reaction,,” Magazine of Concrete Research, No.109,pp.235-242 (1980)
    33. Hobbs, D. W. , Alkali-Silica Reaction in Concrete, Thomas Telfo-rd, London (1988).
    34. Jensen, A. D. , S. Christensen and N. Thaulow , “ Studies of Alkali-Silica Reaction - Part II Effect of Air Entrainment on expansion,” Cement and Concrete Research,Vol.14 ,pp.331-314 (1984).
    35. Katayama,T., “Petrography of Alkali-Aggregate Reactions in Concrete-Reactive Minerals and Reaction Products,” Proc. of East Asia Alkali-Aggregate Reaction Seminar,Japan,pp.1-15(1997).
    36. Ludmila, D. M. , Handbook of Concrete Aggregates, Noyes Publications, Park Ridge, New Jersey, USA (1983).
    37. Ludwig, U., “Effects of Environmental Conditions on Alkali-Aggregate Reaction and Preventive Measures, ” 8th International Conference on Alkali-Aggregate Reaction, Japan, pp583-596 (1989).
    38. Nishibayashi,S. Yamura K.and K.Sakata, “Reaearch on Influence of Cyclic Wetting and Drying on Alkali-Aggregate Reaction,”8th International Conference on Alkali-Aggregate Reaction,Japan,pp. 617-622 (1989).
    39. Nixon, P. J. and M.E. Gaze, “The Effectiveness of Fly Ashes and Granulated Blastfurnace Slags in Preventing AAR,” Pro. 6th Int. Conf.Alkalis in Concrete, Copenhagen, pp.61-68(1983).
    40. Swamy, R. N. , The Alkali-Silica Reaction in Concrete, Van Nostrand Reinhold, New York (1992).
    41. SHRP-C-342, “Alkali Silica Reactivity : An Overview Of Research, ” Strategic Highway Research Program (1993).
    42. Shayan, A. , R. Diggins and I. Ivanusec, “ Effectiveness of Fly Ash in Preventing Deleterious Expansion Due to Alkali-Aggregate Reaction in Normal and Steam-Cured Concrete,” Cement and Concrete Research, Vol.26 ,pp.153-164 (1996).
    43. Stanton,D.E., “Expansion of Concrete Through Reaction Between Cement and Aggregate,” Proc. ASCE Vol.66, pp.1781-1811(1940).
    44. Swenson,E.G., “Alkali-Carbonate Rock Reaction HRP,” No.45,pp.21-40 (1965).
    45. Swenson,E.G.and J.E. Gillott, “Alkali Reactivity of Dolomitic Limestone Aggregate,” Magazine of Concrete Reasearch, Vol.19,No.59,pp.95-104(1967).
    46. Wakizaka,Y., S. Moriya , H. Kawano and K. Ichikawa, “Mineralogical Interpretations of Dissolved Silica and Reduction in alkalinity of the Chemical Method, ”8th International Conference on Alkali-Aggregate Reaction, Japan, pp519-524 (1989).
    47. Wang, H. and J. E. Gillott , “Mechanism of Alkali-Silica Reaction and the Significance of Calcium Hydroxide,” Cement and Concrete Research,Vol.21,pp.647-654 (1991).
    48. West,G., Alkali-Aggregate Reaction in Concrete Roads and Bridges, Thomas Telford, London(1996).
    Advisor
  • (田永銘)
  • Files No Any Full Text File.
    Date of Submission

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.