Title page for 86243002


[Back to Results | New Search]

Student Number 86243002
Author Mien-Tze Kueh(郭勉之)
Author's Email Address No Public.
Statistics This thesis had been viewed 2084 times. Download 475 times.
Department Graduate Institute of Atmospheric Physics
Year 2001
Semester 2
Degree Ph.D.
Type of Document Doctoral Dissertation
Language zh-TW.Big5 Chinese
Title 東亞夏季季風肇始之探討
Date of Defense 2002-06-27
Page Count 239
Keyword
  • 東亞夏季季風
  • 肇始
  • Abstract 本文討論東亞夏季季風最早肇始於南海地區的問題。以南海夏季季風肇始時間為出發點,討論季風環流的多重尺度特性和其年際差異,以及南海(東亞)夏季季風環流的建立過程。論文共分四大部分:○1.季風肇始時間的界定﹔○2.季風環流的多重時間尺度特徵﹔○3.季風肇始時間和東亞地區夏季環流季節演進的關係﹔○4.季風肇始時期,不同尺度環流系統的發展。
    本文比較數種不同的季風肇始定義和其季風肇始日期,並提出一組半客觀的南海夏季季風肇始定義,界定南海局地季風環流肇始時間。在1979~1998年間,季風肇始時間的早晚,年際差異幅度可達一個月,大致上可區分成5月中下旬肇始和6月上旬肇始兩組年份。在此20年間,多數年份(共17年)的南海地區局地季風環流建立過程,均伴隨有鋒面系統活動,少數年份尚有熱帶氣旋性環流系統的參與。因此以季風肇始時期接近南海地區的綜觀尺度環流系統為依據,可分成4種季風肇始環流型態。
    季風肇始時間的早晚和ENSO事件沒有直接關係。波譜分析顯示,南海局地夏季環流結構呈現多重時間尺度的變化特性,具有約30~60天和10~20天的低頻振盪訊號。在季風肇始時期常有低頻擾動增幅現象,然而不同時間尺度的低頻擾動之年際變化並不一致,因此各年的南海夏季季風肇始時間並非取決於同一特定時間尺度的低頻擾動。雙變數EOF分析顯示,季風環流結構可由少數幾個距平場的空間分布型態加以說明。第一個特徵向量為季風環流發展的環境距平場,其年際變化幅度較小﹔第二個特徵向量和季風肇始類型有關,在多數年份可解釋鋒面系統的活動。
    在東亞大氣環流的春夏季節演進過程中,高層南亞反氣旋脊線和中低層副高脊線的相對配置逐漸改變,最終建立夏季時期的型態。夏季季風肇始時期為東亞地區夏季環流結構轉變最顯著的階段,此時期南海地區的環流結構顯著轉變,對流層明顯增暖增濕﹔在鄰近季風肇始時期,東亞陸海交界地帶有較明顯的南北環流系統交互作用。南海局地季風環流和梅雨鋒面系統的環流特性並不相同,前者在暖濕環境中發展,呈現近似滯留的環流特性﹔後者在較大溫濕梯度環境中發展,隨季節演進逐漸北退。鋒面系統和高層西風強風軸季節性北退趨勢的年際差異幅度,比季風肇始時間早晚的差異幅度小﹔鋒面系統可南下的緯度範圍和季風肇始時間也沒有直接關係。
    對季風肇始時期進行合成分析,討論季風肇始時期的環流結構演變。結果顯示南海夏季季風肇始過程,是在高層南亞反氣旋和中低層副高環流處於特定的垂直配置下,所發生的一連串環流調節過程。季風肇始前約兩週,熱帶-副熱帶地區維持暖濕而對流不穩定的中低層大氣特質。南海地區呈現晴空狀態,低層大氣維持反氣旋式流場,可阻擋熱帶西南氣流向東進入﹔高層常為分流形勢。季風肇始的關鍵特徵是副高環流退出、熱帶西南氣流進駐南海地區,並有局地季風槽和對流雲系發展。在季風肇始時期,向南接近南海北界的鋒面雲系,或向西北接近南海東界的熱帶氣旋性環流系統,可透過低層風場擾動或阻擋副高東南氣流進入等效應,破壞南海局地反氣旋式環流形勢,並成為熱帶西南氣流的下游輻合區,有助於熱帶西南氣流東進。隨著低層暖濕西南氣流進入南海地區,並發展成為季風槽結構,南海地區有對流雲系伴隨強而深厚的上升運動發展,呈現高(低)層輻散(輻合)增強的環流結構。此時期南海局地低層水汽輻合顯著增強,水汽來源改變,由肇始前西太平洋的東來水汽輸送,轉為由孟加拉灣經中南半島而來的西南水汽輸送。視熱源和視水汽匯亦顯著增加,呈現對流性加熱特性,對流層增暖增濕致使南海局地中低層對流不穩定度減緩。在此過程中,高層南亞反氣旋脊線北移,脊線南側的東北氣流逐漸增強。約在赤道至20ºN範圍的南亞-東亞地區,呈現高層南冷北暖、高度場北高南低,而低層南暖北冷、高度場南高北低的分布型態。此熱力條件支持高層東風,低層西南風的大尺度垂直風切結構﹔並可維持/加強低層輻合、高層輻散的環流形勢。在高低層脊線的南方,東亞區域哈德里環流和Walker-type緯向垂直環流逐漸建立。一旦季風環流建立,在低層水汽供應不虞匱乏的情況下,南海地區的對流系統加熱氣柱,季風槽結構進入自我維持/加強的階段,則可維持/增強低層輻合、高層輻散,完成局地環流回饋而加強大尺度環流形勢的調節過程。
    分析1998年的南海夏季季風肇始過程,由中小尺度觀點討論鋒面系統、南海局地中尺度對流系統和低層風場擾動,以及組織性季風西南氣流發展的關係。結果顯示在這一年的南海夏季季風肇始時期,鋒面系統南下至華南沿岸,在鋒前西南氣流中有海上對流胞陸續發展,逐漸組織成時空尺度較大的中尺度對流系統,造成南海中南部有對流雲系旺盛發展現象。測站觀測資料顯示這些中尺度對流雲系的發展伴隨著明顯的中尺度風場擾動現象。數值模式(MM5)模擬分析顯示,中尺度對流系統所伴隨的低層擾動風場,為海上中尺度對流系統的中尺度激發機制。敏感度測試發現,潛熱釋放效應對中尺度對流系統的陸續發展相當重要;在一連串的中尺度對流系統發展過程中,熱帶西南氣流東進,南海地區低層高度場下降,並有局地季風槽建立。
    綜合而言,副高環流和南亞反氣旋兩大環流系統的東西向和垂直配置,成為南海季風肇始的大尺度環流背景場,而南海地區的地理優勢,使其成為東亞夏季季風最早爆發的地區。在季風肇始前期,綜觀尺度環流系統(鋒面系統/熱帶對流系統)提供激發作用﹔大尺度的驅動力如副熱帶中高層大氣增暖,暖脊向北發展可透過改變中高對流層溫度分布,而造成高層西風強風軸的結構變化,提供了間接影響。到季風肇始後期,南海地區的熱源成為重要能量來源。
    Table of Content 摘要……………………………………………………………………………………………..…….i
    致謝…………………………………………………………………………………………….….iii
    目錄…………………………………………………………………………………………….….iv
    表目…………………………………………………………………………………………….….vi
    圖目…………………………………………………………………………………..……….….…vii
    第一章、前言……………………………………...………………………………….………………1
    1-1 緒論……………...…………………………………………………………….…………1
    1-2 東亞夏季季風肇始時間…………………………...……………………….……………2
    1-3 東亞夏季季風環流的季節性發展特性和年際變化…………...……….………………3
    1-4 南海(東亞)夏季季風肇始機制……………………………….…………………………4
    1-5 論文研究主題……………………………………………………….………...…………5
    第二章、資料來源、分析方法與論文架構………………………………………………….......…7
    2-1 資料簡介………………………………………………………..………………........……7
    2-2 資料處理及分析方法…………………………………………..……………………….…8
    第三章、季風肇始定義與季風肇始時期的低層流線場特徵…………………………….…..…10
    3-1 夏季季風肇始定義之比較……………………………………………………...…………10
    3-2 南海夏季季風肇始時期的局地環流型態………………………………………….……12
    3-3 南海局地季風肇始定義………………………………………..…...……………..…..…16
    3-4 小結…………………………………………………………………….………..…………18
    第四章、夏季季風肇始時期的多重尺度擾動………………………..……………..…...………20
    4-1季風肇始時間和熱帶大尺度環流低頻擾動的關係………………………...………..…20
    4-2 南海地區多重時間尺度擾動的年際差異……………………..……..….……...………23
    4-3 低層環流的EOF分析…………………………………………....……………...………28
    4-4小結………………………………………………….……………………………………34
    第五章、東亞地區夏季時期的環流特徵……………………………………………...………….36
    5-1大尺度環流的季節變化…………………………………………...…………………….…36
    5-2東亞地區環流結構的季節演變………………………………………...……………….…39
    5-3 季風肇始時間和中緯度系統年際變化…………………………..…………...…….…..43
    5-4 南海地區局地大氣特質的討論…………………………………..………...………..……44
    5-5 小結…………………………………………………...……………………………..……46
    第六章、夏季季風環流的建立過程…………………………………………...………..……..…47
    6-1 個案合方法…………………………………………...……………………………..……47
    6-2 季風肇始時期的中低層環流特徵之合成分析…………………………………....……51
    6-3 季風肇始時期的水氣輸送之合成分析………………………………………...…..……53
    6-4 季風肇始時期的高層環流特性之合成分析………………………...……………....……54
    6-5 季風肇始時期的對流層加熱特性之討論…………………………...……………………58
    6-6 季風肇始時期的環流垂直結構……………………………………..……...……………61
    6-7 小結………………………………………………….……………………………………67
    第七章、1998年南海夏季季風肇始……………………………………………………...………72
    7-1 季風肇始時期的合成分析…………………………………………...……………………72
    7-2 季風肇始時期的綜觀天氣分析……………………………………………….......………73
    7-3 季風肇始時期的中尺度環流特性分析……………………………..…………...………76
    7-4 模式簡介和模擬實驗設計…………………………………………………….....………79
    7-5 模式模擬結果………………………………………….…………………………………81
    7-6 小結…………………………………………………………………………….....………86
    第八章、結論………………………………………………………………….…………...………88
    參考文獻……………………………………………………………………….…………...………93
    附表…………………………………………………………………………….………….………C-1
    附圖…………………………………………………………………………….……………..……F-1
    Reference 王作台,鄧靜君,陳鏡良與胡志文,2001:東亞夏季季風肇始期之分析:高階量變數變化特徵及中緯度與熱帶系統之作用。大氣科學,29,315-340。
    林松錦,麥如俊與嚴明鉦,2000:南海夏季季風肇始期間大氣環流特徵與水汽輸送之合成分析。大氣科學,28,281-292。
    林博雄,1996:東亞夏季季風與梅雨鋒。國立台灣大學大氣科學研究所博士論文,154頁。
    林博雄與林和,1997:東亞夏季季風與梅雨鋒(一):雲型季風指標。大氣科學,25,267-287。 
    柯文雄與鄧博元,1994:台灣梅雨季初期南亞高壓反氣旋之演化研究。大氣科學,22,129-162。
    胡志文,陳孟詩與王作臺,1998:中緯度及熱帶系統對東亞夏季季風肇始影響之初步分析。第十五屆天氣分析與預報研討會論文彙編,台北,389-393。
    麥如俊,1997:南海夏季季風之合成探討。國立中央大學大氣物理研究所碩士論文,98頁。
    郭勉之與林松錦,2001:東亞夏季季風-肇始定義與季風肇始時期的環流特徵。大氣科學,29,141-170。
    郭勉之、蕭美菁與林松錦,2001:從渦度收支探討南海夏季季風肇始期間之大氣環流演變。大氣科學,29,1-20。
    陳隆勛,宋毅與村上勝人,1996:夏季風爆發時期對流雲團的變化特徵。亞洲季風研究的新進展,何金海主編,氣象出版社,北京,54-65。
    潘琦與王作臺,1996:東亞夏季季風年際變化:江淮及台灣地區觀點之探討。大氣科學,24,89-121。
    盧孟明,1998:南海夏季季風肇始早晚與台灣梅雨季(五、六月)乾濕關係之探討。大氣科學,26,205-225。
    Brunet, G., R. Vautard, B. Legras, and S. Edouard, 1995: Potential vorticity on isentropic surfaces: Climatology and diagmostics. Mon. Wea. Rev., 123,1037-1058.
    Chang, C.-P., and G.T.-J. Chen, 1995: Tropical circulation associated with southwest monsoon onset and westerly surges over the South China Sea. Mon. Wea. Rev., 123, 3254-3267.
    Chang J.-C., 1999: On triggering mechanism of SCS summer monsoon onset. 第六屆全國大氣科學學術研討會論文彙編,台北,435-440。
    Chen, C., W.-K. Tao, P.-L. Lin, G. S. Lai, S.-F. Tseng, and T.-C. Chen Wang, 1998a: The intensification of the low-level jet during the development of mesoscale convective systems on a Mei-Yu front. Mon. Wea. Rev., 126, 349-371.
    Chen, G. T.-J., 1994: Large-scale circulation associated with the East Asian summer monsoon and the Mei-Yu over South China and Taiwan. J. Meteor. Soc. Japan, 72, 959-983.
    Chen, S.-J., Y.-H. Kuo, W. Wang, Z.-Y. Tao, and B. Cui, 1998b: A modeling case study of heavy rainstorms along the Mei-Yu front. Mon. Wea. Rev., 126, 2230-2351.
    Chen, T.-C., and J.-M. Chen, 1995: An observational study of the South China Sea monsoon during the 1979 summer: Onset and Cycle. Mon. Wea. Rev., 123, 2295-2318.
    Chen, Y.-L., 1993: Some synoptic-scale aspects of the surface fronts over southern China during TAMEX. Mon. Wea. Rev., 121, 50-64.
    Deser, C., and J. M. Wallace, 1987: El Niño events and their relation to the southern oscillation: 1925-1926. J. Geophys. Res., 92(C13), 14 189-14 196.
    Ding, Y., and Y. Liu, 2001: Onset and the evolution of the summer monsoon over the South China Sea during SCSMEX field experiment in 1998. J. Meteor. Soc. Japan, 79, 255-276.
    Douglas, M. W., 1992: Structure and dynamics of two monsoon depressions. Part I: Observed structure. Mon. Wea. Rev., 120, 1524-1547.
    Fujita, T. T., 1959: Precipitation and cold air production in mesoscale thunderstorm systems. J. Meteor., 16, 454-466.
    Fukutomi, Y., and T. Yasunari, 1999: 10-25 day intraseasonal variations of convection and circulation over East Asia and western north Pacific during early summer. J. Meteor. Soc. Japan, 77, 753-769.
    Grell, G. A., 1993 : Prognostic evaluation of assumptions used by cumulus parameterizations. Mon.. Wea. Rev., 121,767-787.
    Grell, G. A., J. Dudhia, D. R. Stauffer, 1995: A Description of the fifth-generation Penn State/NCAR mesoscale modeling system (MM5). NCAR technical note, NCAR/TN-398+STR, 121pp.
    He, H., J. W. McGinnis, Z. Song, and M. Yanai, 1987: Onset of the Asian summer monsoon in 1979 and the effect of the Tibetan Plateau. Mon. Wea. Rev., 115, 1966-1995.
    Hirasawa, N., K. Kato., and T. Takeda, 1995: Abrupt change in the characteristics of the cloud zone in subtropical East Asian around the middle of May. J. Meteor. Soc. Japan, 73, 221-239.
    Hoskins, B. J., 1996: On the existence and strength of the summer subtropical anticyclones. Bull. Amer. Meteor. Soc., 77, 1287-1292.
    Houze, R. A., Jr., 1982: Cloud clusters and large-scale vertical motion in the Tropics. J. Meteor. Soc. Japan, 60, 396-410.
    Hsu H.-H., C.-T. Terng, and C.-T. Chen, 1999: Evolution of large-scale circulation and heating during the first transition of Asian summer monsoon. J. Climate, 12, 793-810.
    Hui, S., and Y. Qian, 2000: Main features of regional circulation variation during onset of the South China Sea monsoon in 1998. Adv. Atmos. Sci., 17, 322-338.
    Jordan, C. L., 1958: Mean soundings for the west Indies area. J. Meteor., 15,91-97.
    Kang, I.-S., C.-H. Ho, Y.-K. Lim, and K.-M. Lau, 1999: Principal modes of climatological seasonal and intraseasonal variations of the Asian summer monsoon. Mon. Wea. Rev., 127, 322-340.
    Krishnamurti, T. N., 1985: Summer monsoon experiment – A review. Mon. Wea. Rev.. 113,1590-1626.
    Krishnamurti, T. N., H. S. Bedi and M. Subramaniam, 1989: The summer monsoon of 1987. J. Climate, 2,321-340.
    Krishnamurti, T. N., H. S. Bedi and M. Subramaniam, 1990: The summer monsoon of 1988. Meteor. Atmos. Phys., 42,19-37.
    Krishnakumar, V., and K.-M. Lau, 1997: Symmetric instability of monsoon flows. Tellus, 49A, 228-245.
    Krishnakumar, V., and K.-M. Lau, 1998: Possible role of symmetric instability in the onset and abrupt transition of the Asian Monsoon. J. Meteor. Soc. Japan, 76, 363-383.
    Kutzbach, J. E., 1967: Empirical eigenvectors of sea-level pressure, surface temperture and precipitation complexes over North America. J. Appl. Meteor., 6, 791-802.
    Lau, K. M., Y. H. Ding, J. T. Wang, R. Johnson, T. Keenan, R. Citell, J. Gerlach, O. Thiele, T. Rickenbach, S. C. Tsay, and P. H. Lin, 2000: A report of the field operations and early results of the South China Sea Monsoon Experiment (SCSMEX). Bull. Amer. Meteor. Soc., 81, 1261-1270.
    Lau, K.-M., K.-M. Kim, and S. Yang, 2000: Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J. Climate, 13, 2461-2481.
    Lau, K.-M., and M.-C. Li, 1984: The monsoon of East Asia and its global associations – A survey. Bull. Amer. Meteor. Soc., 65, 114-125.
    Lau, K. -M., and P.-J. Sheu, 1988: Annual cycle, quasi-biennial oscillation, and southern oscillation in global precipitation. J. Geophys. Res., 93(D9), 10 975-10 988.
    Lau, K.-M., H.-T. Wu, and S. Yang, 1998: Hydrologic processes associated with the first transition of the Asian summer monsoon: A pilot satellite study. Bull. Amer. Meteor. Soc., 79, 1871-1882.
    Lau, K.-M., G.-J. Yang, and P.-J. Sheu, 1988: Seasonal and intraseasonal climatology of summer monsoon rainfall over East Asia. Mon. Wea. Rev., 116, 18-37.
    Lau, K.-M., and S. Yang, 1996: Seasonal variation, abrupt transition, and intraseasonal variability associated with the Asian summer monsoon in the GLA GCM. J. Climate, 9, 965-985.
    Lau, K.-M., and S. Yang, 1997: Climatology and interannual variability of the Southeast Asian summer monsoon. Adv. Atmos. Sci., 14, 141-161.
    Li, C., and M. Yanai, 1996: The onset and interannual variability of the Asian summer monsoon in relation to land-sea thermal contrast. J. Climate, 9, 358-375.
    Li, C., and J. Wu, 2000: On the onset of the South China Sea summer monsoon in 1998. Adv. Atmos. Sci., 14, 176-194.
    Li, C., and L. Zhang, 1999: Summer monsoon activities in South China Sea and its impacts. Chinese J. Atmos. Sci., 23, 111-121.
    Liang, X.-Z., and W.-C. Wang, 1998: Associations between China monsoon rainfall and tropospheric jets. Quart. J. Roy. Meteor. Soc., 124, 2597-2623.
    Liebmann, B., and C. Smith, 1996: Description of a complete(interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77,1275-1277.
    Luo, H., and M. Yanai, 1983: The large-scale circulation and heat sources over the Tibetan plateau and surrounding areas during the early summer of 1979. Part I: Precipitation and kinematics analyses. Mon. Wea. Rev., 111, 922-944.
    Luo, H., and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and Moisture budgets. Mon. Wea. Rev., 112, 966-989.
    Murakami, M., 1984: Analysis of the deep convective activities over the western Pacific and southest Asia. Part II: Seasonal and intraseasonal variations during northern summer. J. Meteor. Soc. Japan, 62, 88-108.
    Murakami, T., 1980: Empirical orthogonal function analysis of satellite-observed outgoing longwave radiation during summer. Mon. Wea. Rev., 108, 205-222.
    Murakami, T., L.-X. Chen, and A. Xie, 1986: Relationship among seasonal cycles, low-frequency oscillations, and transient disturbances as revealed from outgoing longwave radiation. Mon. Wea. Rev., 114, 1456-1465.
    Nitta, T., 1986: Long-term variations of cloud amount in the western Pacific region. J. Meteor. Soc. Japan, 64, 373-390.
    Nitta, T., 1987: Convective activities in the tropical Western Pacific and their impact on the northern hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 639-658.
    North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699-706.
    O’Brien, J. J., 1970: Alternative solutions to the classical vertical velocity problem. J. Appl. Meteor., 9, 197-203.
    Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 3-40.
    Purdom, J. F. W., 1979: The development and evolution of deep convection. Proc. of the 11th Conf. On Severe Local Storms, October 2-5, Kansas City, MO, Amer. Meteor. Soc., Boston, MA, 14, 143-150.
    Purdom, J. F. W., 1973: Mesohighs and satellite imagery. Mon. Wea. Rev., 101, 180-181.
    Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperture and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354-384.
    Saha, K., F. Sanders, and J. Shukla, 1981: Westward propagating predecessors of monsoon depressions. Mon. Wea. Rev., 109, 330-343.
    Samel A. N., W.-C. Wang, and X.-Z.Liang, 1999: The monsoon rainband over China and relationships with the Eurasian Circulation. J. Climate, 12, 115-131.
    Shen, S., and K.-M. Lau, 1995: Biennial oscillation associated with the East Asian summer monsoon and tropical sea surface temperatures. J. Meteor. Soc. Japan, 73, 105-124.
    So, C.-H., and J. C.-L. Chan, 1997: An observational study on the onset of the summer monsoon over South China around Hong Kong. J. Meteor. Soc. Japan, 75, 43-57.
    Tao, S.-Y., and L.-X. Chen, 1987: A review of recent research on the East Asian monsoon in China. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti Eds., Oxford Univ. Press, 60-92.
    Thompson, R. M., S. W. Payne, E. E. Recker, and R. J. Reed, 1979: Structure and properties of synaptic-scale wave disturbances in the Intertropical convergence zone of the eastern Atlantic. J. Atmos. Sci., 36, 53-71.
    Troup, A. J., 1965: The Southern Oscillation. Quart. J. Roy. Meteor. Soc., 91, 490-506.
    Ueda, H., and T. Yasunari, 1998: Role of warming over the Tibetan Plateau in early onset of the summer monsoon over the Bay of Bengal and the South China Sea. J. Meteor. Soc. Japan, 76, 1-12.
    Wang, B., and R. Wu, 1997: Peculiar temporal structure of the South China Sea summer monsoon. Adv. Atmos. Sci., 14, 176-194.
    Wang, S., and Y. Qian, 2000: Diagnostic study of apparent heat source and moisture sinks in the South China Sea and its adjacent areas during the onset of 1998 SCS monsoon. Adv. Atmos. Sci., 17, 285-298.
    Webster, P. J., 1994: The role of hydrological processes in ocean-atmosphere interactions. Rev. in Geophysics., 32, 427-476.
    Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877-926.
    Wu R., and B. Wang, 2000: Interannual variability of summer monsoon onset over the western north Pacific and the underlying processes. J. Climate, 13, 2483-12501.
    Wu, G., and Y. Zhang, 1998: Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon. Wea. Rev., 126, 913-927.
    Xie, A., Y.-S. Chung, X. Liu, and Q. Ye, 1998: The interannual variations of summer monsoon onset over the South China Sea. Theor. Appl. Climatol., 59, 201-213.
    Yan, J.-Y., 1997: Observational study on the onset of the South China Sea southwest monsoon. Adv. Atmos. Sci., 14, 276-287
    Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611-627.
    Zhang, D.-L., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer-Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 1594-1609.
    Advisor
  • Song-Chin Lin(林松錦)
  • Files
  • 86243002.pdf
  • approve immediately
    Date of Submission 2002-07-17

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.