Title page for 86226026


[Back to Results | New Search]

Student Number 86226026
Author Jian-De Gu(古建德)
Author's Email Address jdgu@ios.ncu.edu.tw
Statistics This thesis had been viewed 2055 times. Download 798 times.
Department Optics and Photonics
Year 2004
Semester 2
Degree Ph.D.
Type of Document Doctoral Dissertation
Language zh-TW.Big5 Chinese
Title Technology Development of the Direct Fabrication of Large-area Polycrystalline Silicon Thin Films at Low Temperature
Date of Defense 2005-07-02
Page Count 157
Keyword
  • Large-area Microwave Plasma Source
  • Low-temperature Fabrication
  • Plasma-enhanced Chemical Vapor Deposition
  • Polycrystalline Silicon Thin Film
  • RF-bias
  • Abstract Large-area polycrystalline silicon (poly-Si) thin films are fabricated by employing both the RF-biased RF inductively-coupled PECVD and the Adjustable Array Antenna (Triple-A) microwave PECVD system at temperature lower than 82 °C. High purity (99.99 %) SiH4, H2, and Ar are introduced as reaction gases, and ultrasonically cleaned glasses and p-type (100) silicon wafers are used as substrates.
    In the RF-biased RF inductively-coupled PECVD system, poly-Si thin films with grain size about 0.15 ~ 0.3 μm are successfully fabricated by applying another capacitively-coupled RF power on substrates. All crystalline silicon films exhibit (111)-Si preferred orientation. Under proper deposition conditions, the capacitively-coupled RF power can be taken as bias. The deposition rate, grain size, and crystallinity of poly-Si thin films are improved as the RF bias power increased to 5 watts. However, under higher RF bias power, the superposition of the plasma regions generated by the RF main power and the RF bias power are observed; thus results in a proper plasma environment with 10 cm wide in axial direction for poly-Si thin films deposition.
    In the triple-A microwave PECVD system, three sets of array antenna composed by many copper rods with adjustable length are employed to couple the large-area microwave power into the deposition chamber. Silicon films with grain sizes about 80 ~ 100 nm and surface roughness uniformity within 5 % are successfully deposited over 70 % of the 34 cm ´ 45 cm substrate holder. Further studies will focus on the modification of the system design so as to reach the goal to deposit silicon films with improved crystallinity, larger grain sizes, and more uniformity over the large area.
    Table of Content 中文摘要………………………………………………………i
    英文摘要………………………………………………………ii
    謝誌………………………………………………………iii
    目錄………………………………………………………iv
    圖目錄………………………………………………………vi
    表目錄……………………………………………................x
    第一章 簡介……………………………………………………1
    第二章 文獻回顧………………………………………………3
    2.1 矽薄膜之分類與應用…………………………………3
    2.1.1 矽薄膜之分類…………………………………3
    2.1.2 薄膜電晶體…………………………………10
    2.1.3 太陽能電池…………………………………14
    2.2 複晶矽薄膜的製作方法….…………………………19
    2.2.1 準分子雷射退火法…………………………….20
    2.2.2 固相結晶法…………………………….25
    2.2.3 金屬誘發式結晶法…………………………….28
    2.2.4 其他沉積技術…………………………….33
    2.3 大面積微波電漿源發展現況………………………..36
    2.4 電漿輔助化學氣相沉積法…………………………….52
    第三章 實驗架構與薄膜分析…………………………………58
    3.1 偏壓輔助射頻電感耦合式PECVD系統…………..58
    3.2 可調式陣列天線大面積微波PECVD系統…………..67
    3.3 薄膜製作程序…………………………………………..73
    3.4 薄膜材料分析…………………………………………..77
    第四章 結果與討論…………………………………………..81
    4.1 以RF-PECVD探討複晶矽薄膜之低溫製程…………...81
    4.1.1 系統分析…………………………………………..84
    4.1.2 複晶矽薄膜沉積…………………………………92
    4.1.3 RF偏壓能量與RF主能量之疊加效應…………120
    4.2 以M-PECVD進行大面積複晶矽薄膜沉積…………126
    第五章 結論………………………………………………….148
    參考文獻………………………………………………………150
    專有名詞索引.…………………………………………………155
    著作目錄………………………………………………………157
    Reference [1] 陳玉瓊、洪傳獻,材料與社會 18 (1998) 30.
    [2] A. J. Lewis, G.. A. N. Conneil, W. Paul, and J. R. Pawlik, Proc. Int. Conf. Tetrahedrally Bonded Amorphous Semicond.,American Institute of Physics, New York, (1974) 27.
    [3] S. Uchikoga and N. Ibaraki, Thin Solid Films 383 (2001) 19.
    [4] A. Goetzberger and C. Hebling, Solar Energy Materials & Solar Cells 62 (2000) 1.
    [5] H. W. Schock, Appl. Surf. Sci. 92 (1996) 606.
    [6] A. V. Shah, R. Platz, and H.Keppner, Solar Energy Materials & Solar Cells 38 (1995) 501.
    [7] M. Konagai, Renewable Energy 8 (1996) 410.
    [8] Y. Zhao, W. Wang, F. Yun, Y. Xu, X. Liao, Z. Ma, G. Yue, and G. Kong, Solar Energy Materials & Solar Cells 62 (2000) 143.
    [9] J. E. Fair, Solid State Technol. (1992) 47.
    [10] F. Plais, P. Legagneux, C. Retia, ea al., Microelectronic Engineering 28 (1995) 443.
    [11] M. Miyasaka and J. Stoemenos, J. Appl. Phys. 86 (10) (1999) 5556.
    [12] J. Jang, J. I. Ryu, S. Y. Yoon and K. H. Lee, vacuum 51 (4) (1998) 769.
    [13] K. Shimizu, O. Sugiura, and M. Matsumura, IEEE Trans. Electron Devices 40 (1) (1993) 112.
    [14] E. Fujii, K. Senda, F. Emoto, A. Yamamoto, A. Nakamura, Y. Uemoto and G. Kano, IEEE, Transactions on Electron Devices 37 (1) (1990) 121.
    [15] A. Kohno, T. Sameshima, N. Sano, M. Sekiya and M. Hara, IEEE Trans. Electron Devices 42 (2) (1995) 251.
    [16] Y. Mishima, M. Takei, T. Uematsu, N. Matsumoto, T. Kakehi, U. Wakino, and M. Okabe, J. Appl. Phys. 78 (1) (1995) 217.
    [17] M. K. Hatalis, D.N. Kouvatsos, J. H. Kung, A. T. Voutsas, J. Kanicki, Thin Solid Films 338 (1999) 281.
    [18] T. Matsuyama, N. Terada, T. Baba, T. Sawada, S. Tsuge, K. Wakisaka, S. Tsuda, J. Non-Cryst. Solids 198-200 (1996) 940.
    [19] R. B. Bergmann and J. Krinke, J. Cristal Growth 177 (1997) 191.
    [20] R. Rüther, J. Livingstone, and N. Dytlewski, Thin Solid Films 310 (1997) 67.
    [21] A. Mimura, N. Konishi, K. Ono, J. Ohwada, Y. Hosokawa, Y. Ono, T. Suzuki, K. Miyata, and H. Kawakami, IEEE Trans. Electron Devices 36 (1989) 351.
    [22] G. Liu and Stephen J. Fonash, Appl. Phys. Lett. 62 (20) (1993) 2554.
    [23] S. W. Lee and S. K. Joo, IEEE Elcetron Device letters 17(4) (1996) 160.
    [24] S. Y. Yoon, J. Y. Oh, C. O. Kim, J. Jang, J. Appl. Phys. 84(11) (1998) 6463.
    [25] L. Rezaee, A. Khakifirooz, and S. S. Mohajerzadeh, J. Non-Cryst. Solids 303 (2002) 232.
    [26] O. Nast and S. R. Wenham, J. Appl. Phys. 88 (1) (2000) 124.
    [27] O. Nast, S. Brehme, S. Pritchart, A. G. Aberle, and S. R. Wenham, Solar Energy Materials & Soalr Cells 65 (2001) 385.
    [28] S. Gall, M. Muske, I. Sieber, O. Nast, and W. Fuhs, J. Non-Cryst. Solids 229-302 (2002) 741.
    [29] K. H. Kim, S. J. Park, A. Y. Kim, and J. Jang, J. Non-Cryst. Solids 229-302 (2002) 83.
    [30] K. C. Park, J. H. Lee, I. H. Song, S. H. Jung, and M. K. Ham, J. Non-Cryst. Solids 299-302 (2002) 1330.
    [31] J. H. Ahn, J. N. Lee, Y. C. Kim, B. T. Ahn, Current Appl. Phys. 2 (2002) 135.
    [32].H. Y. Kim, Y. S. Kang, Paul S. Lee, and J. Y. Lee, Thin Solid Films 402 (2002) 296.
    [33] J. H. Ahn, J. H. Eom, K. H. Yoon, and B. T. Ahn, Solar Energy Materials & Soalr Cells 74 (2002) 315.
    [34] S. Ecoffey, D. Bouvet, A. M Ionescu, and P. Fazan, Nanotechnology 13 (2002) 290.
    [35] S. Suzuki, M. Kondo and A. Matsuda, Solar Energy Materials & Soalr Cells 74 (2002) 489.
    [36] P. P. Ray, N. D. Gupta, P. Chaudhuri, D. L. Williamson, S. Vignoli, and C. Longeaud, J. Non-Cryst. Solids 299-302 (2002) 123.
    [37] R. E. I. Schropp, B. Stannowski, A. M. Brockhoff, P. A. T. T. van Veenendaal, and J. K. Rath, Mater. Phys. Mech. 1 (2000) 73.
    [38] J. Puigdollers, D. Dosev, A. Orpella, C. Voz, D. Peiro, J. Bertomeu, L. F. Marsal, J. Pallares, J. Andreu, and R. Alcubilla, Mater. Sci. Eng. B 69-70 (2000) 526.
    [39] M. Zhu, Y. Cao, X. Guo, J. Liu, M. He, and K. Sun, Solar Energy Materials & Soalr Cells 74 (2002) 315.
    [40] J. I. Woo, H. J. Lim and J. Jang, Appl. Phys. Lett. 65 (13) (1994) 1644.
    [41] S. K. Kim, K. C. Park and J. Jang, J. Appl. Phys. 77 (10) (1995) 5115.
    [42] H. J. Lim, B. Y. Ryu, and J. Jang, Appl. Phys. Lett. 66 (21) (1995) 2888.
    [43] M. J. Jung, Y. M. Jung, L. R. Shaginyan and J. G. Han, Thin Solid Films 420-421 (2002) 429.
    [44] I. Ganachev and H. Sugai, Plasma Sources Sci. Technol. 11 (2002) A178.
    [45] I. Ganachev and H. Sugai, Surf. Coat. Technol. 174-175 (2003) 15.
    [46] H. Sugai, I Ghanashev, and M. Nagatsu, Plasma Sources Sci. Technol. 7 (1998) 192.
    [47] M. Nagatsu, S. Morita, I. Ghanashev, N. Toyoda, and H. Sugai, J. Phys. D: Appl. Phys. 33 (2000) 1143.
    [48] M. Nagatsu, T. Sano, N. Takada, N. Toyoda, M. Tanga, and H. Sugai, Diamond Relat. Mater. 11 (2002) 976.
    [49] K. Shimatani, T. Okamoto, and Y. Okamoto, Vacuum 66 (2002) 359.
    [50] D. Korzec, F. Werner, R. Winter, and J. Engemann, Plasma Source Sci. Technol. 5 (1996) 216.
    [51] D. Korzec, D. Theirich, F. Werner, K. Traub, and J. Engemann, Surf. Coat. Technol. 74-75 (1995) 67.
    [52] G. Fedosenko, D. Korzec, A. Schwabedissen, J. Engemann, E. Braca, and J. M. Kenny, Diamond Relat. Mater. 10 (2001) 920.
    [53] R. Winter, D. Korzec, and J. Engemann, Surf. Coat. Technol. 93 (1997) 134.
    [54] W. Petasch, E. Räuchle, H. Muegge, and K. Muegge, Surf. Coat. Technol. 93 (1997) 112.
    [55] M. Kaiser, K. -M. Baumgärtner, A. Schulz, M. Walker, and E. Räuchle, Surf. Coat. Technol. 116-119 (1999) 552.
    [56] M. Walker, K. -M. Baumgärtner, J. Feichtinger, M. Kaiser, A. Schulz, and E. Räuchle, Vacuum 57 (2000) 387.
    [57] H. Schlemm, A. Mai, S. Roth, D. Roth, K. -M. Baumgärtner, and H. Muegge, Surf. Coat. Technol. 174-175 (2003) 208.
    [58] A. Murai, I. Ohya, T. Yasui, H. Tahara, and T. Yoshikawa, Thin Solid Films 281-282 (1996) 146.
    [59] D. Roth, B. Rau, S. Roth, J. Mai, and K. -H. Dittrich, Surf. Coat. Technol. 74-75 (1995) 637.
    [60] S. Tada, W. Miyazawa, Y. Sakamoto, S. Den, and Y. Hayashi, Thin Solid Films 281-282 (1996) 149.
    [61] Mitsuharu Konuma, Film Deposition by Plasma Techniques, Springer-Verlag Berlin Heidelberg New York, 1992.
    [62] 陳家豪,國立中央大學光電科學研究所碩士論文,2002年。
    [63] 林桔仁,國立中央大學光電科學研究所碩士論文,2004年。
    [64] H. Yasuda and T. Hirotus, J. Appl. Polym. Sci. 21 (1977) 3139.
    [65] P. L. Tseng and W. J. James, J. Vac. Technol. 13 (1985) 2634.
    [66] Brian Chapman, Glow Discharge Processes Sputtering and Plasma Etching, John Wiley & Sons, 1980.
    [67] J. Owens, D. Han, B. Yan, J. Yang, K. Lord, and S. Guha, NCPV and Solar Program Review Meeting (2003) 776.
    [68] G. Yue, J. Lorentzen, J. Lin, Q. Wang, and D. Han, Appl. Phys. Lett. 75 (1999) 492.
    [69] Y. H. Wang, J. Lin, and C. H. A. Huan, Mater. Sci. Eng. B 104 (2003) 80.
    Advisor
  • Pei-Li Chen(陳培麗)
  • Files
  • 86226026.pdf
  • approve in 2 years
    Date of Submission 2005-07-19

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.