Title page for 86222026


[Back to Results | New Search]

Student Number 86222026
Author Pao-Ling Koh(戈保凌)
Author's Email Address No Public.
Statistics This thesis had been viewed 329 times. Download 11 times.
Department Physics
Year 1998
Semester 2
Degree Master
Type of Document Master's Thesis
Language English
Title Mg and Mg+P Ion Implanted GaN Thin Films
Date of Defense
Page Count 61
Keyword
  • activation
  • AlN
  • GaN
  • ion implantation
  • Mg
  • P
  • RTA
  • X-ray
  • Abstract The structure changes and the optical and electrical characteristics of GaN thin films doped with Mg and P ions implantation were studied. The GaN was grown on c- plane sapphire substrate by metalorganic chemical vapor deposition ( MOCVD ). In this thesis, we examined the structure damage induced by the Mg and Mg / P ion implant on GaN. The degree of damage depends on the implantation dose, implantation energy, and anneling temperature. The in-plane and out-of-plane x-ray diffraction results showed that strain reduced by the high-does ( ≧ 5E15 cm-2 ) implantation, could not be totally recovered with 1050℃ repaid thermal anneling ( RTA ) treatment . Structure damage which was caused by relatively low-dose ( ≦ 5E13 cm-2 ) implantation , can be recovered after 900℃ RTA treatment . However, different implantation energies ( 150 keV to 200 keV range ) do not cause observable difference in both x-ray diffraction and PL spectra. The PL spectra showed only one broad violet emission at approximately 390 nm at 20 K for Mg ion implanted samples. Except the 390 nm peaks, there was a 532 nm green emission for the Mg / P co-implanted samples. For the samples annealed at 1100°C on higher temperature by furnace, we found that structure damage caused by low dose implantation could be completely removed. The strain resulting from high-dose implantation also was reduced obviously by annealing at 1300°C.
    For the Hall measurement results, co-implantation of Mg / P (150/200 keV, 5E15 /cm2) with AlN capping was found to achieve p-type after a 1200°C annealing. Activation of Mg as acceptors was around 1 %. But samples which were annealed at 1300°C, the activation percentage only around 0.3 %.
    Table of Content Abstract ( in Chinese ) …………………………………………...…i
    Abstract ( in English ) …………………………………………….iii
    Table of Contents ………………………………………………………v
    Table Captions ………………………………………………………...vii
    Figure aptions…………………………………………………………viii
    Chapter 1. Introduction and outlines…………………………..1
    Chapter 2 Ion Implantation of GaN……………………………….3
    2-1 Wafer Structures…………………………..…………..3
    2-2 Wafer Cutting and Cleaning…………………………..3
    2-3 Ion Implantation…………………………………….…..3
    2-3-1 Ion Range and Distribution Theory…...……………4
    2-3-2 Ion Implantation of GaN….......…………………..7
    2-4 Activation of Implanted GaN………………………....8
    2-4-1 The AlN encapsulation…………....……..……....8
    2-4-2 Rapid Thermal Annealing…………………………….9
    2-4-3 High Temperature Furnace Annealing…….......…9
    2-5 P-Contact Metallization and Annealing……………10
    Chapter 3 Methods of Characterization……………………………11
    3-1 X-Ray Diffraction…………………………………………….11
    3-1-1 X-Ray Diffraction Experimental Setup…………11
    3-1-2 Calculation of Coherence Length and Strain…………11
    3-2 Hall Measurement………………………………….…………13
    3-3 Photoluminescence……………………………………...…13
    3-4 Scanning Electron Microscopy………………………….…14
    3-5 Secondary Ion Mass Spectrometry……………………………14
    Chapter 4 Characteristics of GaN Films……………...………16
    4-1 Rapid Thermal Annealing of Ion Implanted GaN………16
    4-1-1 The Structure Changes …………………………...…16
    4-1-2 RTA Treatment………………………………………….18
    4-1-3 The Electric and photoluminescence Results………19
    4-2 High Temperature Furnace Annealing of Implanted GaN……21
    4-2-1 The Surface Changes After High Temperature Annealing..21
    4-2-2 The Structure Changes…………………………………22
    4-2-3 The Electric Results…………………………………23
    Chapter 5 Conclusion and Future Work……………………...26
    5-1 Conclusion………………………………………………..26
    5-2 Future Work…………………………………………………27
    Reference……………………………………………………………..…29
    Tables………………………………………………………………….33
    Figures……………………………………………………………...…37
    Reference [1] H. Ryssel, I. Ruge, Ion Implantation, John Wiley & Sons
    Ltd. (1986 )
    [2] J. I. Pankove and J. A. Hutchby, J. Appl. Phys. 47, 5387
    (1976)
    [3] M. Rubin, N. Newman, J. S. Chan, T. C. Fu, and J. T. Ross,
    Appl. Phys. Lett. 64, 64 (1994)
    [4] S.J. Pearton, C. B. Vartuli, J. C. Zopler, C. Yuan, and R.
    A. Stall, Appl. Phys. Lett. 67, 1435 (1995)
    [5] J. C. Zolper, M. Hagerott Crawford, S. J. Pearton, C. R.
    Abernathy, C. B. Vartuli, C. Yuan, and R. A. Stall, J
    Electron. Materials, 25, 839 (1996)
    [6] J. S. Chan, N. W. Cheung, L. Schloss, E. Jones, W. S.
    Wong, N. Newman, X.. Liu, E. R. Weber, A. Gassman, and M.
    D. Rubin, Appl. Phys. Lett. 68, 2702 (1996)
    [7] E. Solkowski, G. S. Pomrenke, Y. K. Yeo, and R. L.
    Rengehold, Physica Scripta T69, 276 (1997)
    [8] H. H. Tan, J. S. Williams, J. Zou, D. J. H. Cockayne, S.
    J. Pearton, J. C. Zolper, and R. A. Stall 72, 1190 (1998)
    [9] J. C. Zolper, A. G. Baca, R. J. Shul, R. G. Wilson, S. J.
    Pearton, and R. A. Stall, Appl. Phys. Lett. 68, 166 (1996)
    [10] J. C. Zolper, D. J. Rieger, A. G. Baca, S. J. Pearton, J.
    W. Lee and R. A. Stall, Appl. Phys. Lett. 69, 538 (1996)
    [11] J. F. Ziegler, Handbook of ion implantation technology,
    Elsevier Science Publishers B.V. (1992)
    [12] S. M.Sze, VLSI Technology, John Wiley & Sons, Inc. (1986)
    [13] J. Lindhard, M. Scharff, and H. Schiott, Mat. Fys. Med.
    Dan. Vid Selsk, 33, 1 (1963)
    [14] B. J. Pong, C. J. Pan, Y. C. Teng, G. C. Chi, W. H. Li, K.
    C. Lee, and C. H. Lee, J. Appl. Phys. 83, 5992 (1998)
    [15] J. Hong, J.W. Lee, C. B. Vartuli, C. R. Abernathy, J. D.
    MacKenzie, S. M. Donovan, and J. C. Zolper, J. Vac. Sci.
    Technol. A 15(3), 797 (1997)
    [16] S. J. Pearton, F. Ren, J. C. Zolper, and R. J. Shul, Mat.
    Res. Soc. Symp. Proc. 482, 961 (1998)
    [17] J. R. Mileham, S. J. Pearton, C. R. Abernathy, J. D.
    MacKenzie, R. J. Shul, and S. P. Kilcoyne, Appl. Phys.
    Lett. 67, 1119 (1995)
    [18] C. B. Vartuli, S. J. Pearton, J.W. Lee, C. R. Abernathy,
    J. D. MacKenzie, J. C. Zolper, and R. J. Shul,
    Electrochem. Soc. 143, 3681 (1996)
    [19] J. K. Sheu, Y. K. Su, G.C.Chi, W. C. Chen, C. Y. Chen, C.
    N. Huang, J. M. Hong, Y. C. Yu, C. W. Wang, and E. K. Lin,
    J. Appl. Phys. 83, 3127 (1998)
    [20] M. A. Khan, Q. Chen, R. A. Skogman, and J. N. Kuznia,
    Appl. Phys. Lett. 66, 2046 (1995)
    [21] J. W. Yang, Q. Chen, C. J. Sun, B. Lim, M. Z. Anwar, M.
    Asif Khan, and H. Temkin, Appl. Phys. Lett. 69, 369 (1996)
    [22] C. H. Lee, G. C. Chi, C. F. Lin, M. S. Feng, and J. D.
    Guo, Appl. Phys. Lett. 68, 3440 (1996)
    [23] B. D. Cullity, Elements of x-ray diffraction, Addison-
    Wesley Publishing Company, Inc. ( 1978), Ch. 3
    [24] 許樹恩,吳泰伯,X光繞射原理與材料結構分析,中國材料科學學
    會,(1996)
    [25] R. Nipoti, M. Servidori, M. Bianconi, and S. Milita, Nucl.
    Instr. and Meth. In Phys. Res. B 120, 64 (1996)
    [26] C. Liu, B. Mensching, K. Volz, and B. Rauschenbach, Appl.
    Phys. Lett. 16, 2313 (1997)
    [27] G. R. Lin, W. C. Chen, C. S. Chang, S. C. Chao, K. H. Wu,
    T. M. Hsu, W. C. Lee, and C. L. Pan, IEEE J. Quan. Electr.
    34, 1 (1998)
    [28] Dieter K. Schroder, Semiconductor material and device
    characterization, John Wiley & Sons, Inc. (1990), Ch 2
    [29] J. S. Chan, N. W. Cheung, L. Schloss, E. Jones, W. S.
    Wong, N. Newman, X. Liu, E. R. Weber, A. Gassman, and M.
    D. Rubin, Appl. Phys. Lett. 68, 2072 (1996)
    [30] F. A. Ponce, D. P. Bour, W. Gotz, and P. L. Wright, Appl.
    Phys. Lett. 68, 57 (1996)
    [31] J. I. Pankove, Optical processes in semiconductor, Dover
    Publications, Inc. New York (1971) Ch.7
    [32] J. Neugebauer and C. G. van de Walle, Phys. Rev. B50, 8067
    (1994)
    [33] M. Simth, G. D. Chen, J. Y. Lin, H. X. Jiang, A. Salvador,
    B. N. Sverdolv, A. Botchkarev, H. Morkoc, and B.
    Goldenberg, Appl. Phys. Lett. 68, 1883 (1996)
    [34] J. M. Myoung, K. H. Shim, C. Kim, O. Gluschenkov, K. Kim,
    S. Kim, D. A. Turnbull, and S. G. Bidhop, Appl. Phys.
    Lett. 69, 2722 (1996)
    [35] Jacques I. Pankove, Gallium Nitride (GaN) I semiconductors
    and Semimetals, vol.50, Academic Press (1998), Ch.4
    [36] M. E. Sherwin, J. C. Zolper, A. G. Baca, T. J. Drummond,
    R. J.Shul, A. J. Howard, D. J. Rieger, R. P. Schneider,
    and J. F. Klem, J. Electron. Mater. 15, 809 (1994)
    [37] A. Edwards, Mulpuriv. Rao, B. Molnar, A. E. Wickenden, O.
    W. Holland, and P. H. Chi, J. Electron. Mater. 26, 334
    (1997)
    [38] M. V. Rao, and R. K. Nadella, J. Appl. Phys. 67, 1761
    (1990)
    Advisor
  • G. C. Chi(紀國鐘)
  • Files No Any Full Text File.
    Date of Submission

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.