[Back to Results | New Search]

Student Number 85344008 Author Fang-Ming Yu(¤×ªÚ»Ê) Author's Email Address fmyeu@mail.kwit.edu.tw Statistics This thesis had been viewed 1698 times. Download 1092 times. Department Electrical Engineering Year 2002 Semester 2 Degree Ph.D. Type of Document Doctoral Dissertation Language English Title Practical Fuzzy Sliding Mode Controller for Nonlinear

SystemsDate of Defense 2003-07-09 Page Count 104 Keyword fuzzy sliding mode controller nonlinear systems single fuzzy input Abstract A practical fuzzy sliding mode controller for uncertain time-delay with nonlinear

input systems and for a class of nonlinear systems is presented. The controller design

deals with the problems of the dimensionality of fuzzy input variables in fuzzy logic

control (FLC) and the chattering phenomena in sliding mode control (SMC)

effectively. The main results of the proposed method are as follows.

1. We propose two methods to reduce the number of fuzzy input variables. First,

without affecting the performance of the system, the proposed single-fuzzy- input

quasi fuzzy sliding mode controller (SQ-FSMC) by way of a composite state

function reduces the number of rules greatly. Second ly, the design of decoupled

single-fuzzy- input fuzzy sliding mode controller (SFI-FSMC) for the fourth-order

coupled systems shows a better performance than previous work.

2. For the chattering problem of the SMC, this phenomenon can be reduced

effectively with the proposed controller by adjusting the control input near the

sliding hyperplane.

3. A self-tuning single-fuzzy-input controller (ST-SFIC) can be easily applied to

uncertain time-delay dynamical systems with nonlinear input. The self-tuning

scheme dramatically improves the control input behavior. Also, the chattering

phenomenon is eliminated effectively. The control algorithm is convenient and

easy to utilize.

The above methods have been illustrated by the simulation results of the pole and the

cart systems as well as the ball and beam systems. In addition, the uncertain

time-delay with a nonlinear input system can be stabilized to the equilibrium. The

experimental results of the present seesaw system with external disturbance are given.Table of Content Contents I

Abstract III

List of Figures V

List of Tables VIII

Chapter 1 Introduction

1.1 Motivation and Background 1

1.2 Organization and Main Tasks 3

Chapter 2 Problems Formulations

2.1 Single- input Plant System 8

2.2 Coupled System 9

2.3 Uncertain Time-delay System with Nonlinear Input 11

Chapter 3 Methodology

3.1 Design of Single-fuzzy- input Quasi-FSMC (SQ-FSMC) 16

3.2 Design of Decoupled Fuzzy Logic Controller 21

3.3 Design of FSMC for Uncertain Time-delay Systems with

Nonlinear Input 25

3.4 Design of Self-tuning Single-fuzzy- input Controller (ST-SFIC) for

Uncertain Time-delay Systems with Nonlinear Input 31

3.4.1 Single- fuzzy- input Controller (SFIC) for Uncertain

Time-delay Systems with Nonlinear Input 31

3.4.2 Self-tuning Scheme and Scaling Factor 34

Chapter 4 Examples and Simulations

4.1 Two Examples of Single-fuzzy- input Quasi-FSMC (SQ-FSMC) 46

4.2 Three Examples of Decoupled Fuzzy Logic Controller 51

4.3 Example of FSMC for Uncertain Time-delay Systems with

Nonlinear Input 56

4.4 Example of Self- tuning Single-fuzzy- input Controller (ST-SFIC)

for Chattering Elimination of Uncertain Time-delay Systems with

Nonlinear Input 59

Chapter 5 Discussion and Conclusions 84

References 86

Author¡¦s Information 92

Publication List 93Reference 86

References

[1] H. Allamehzadeh and J. Y. Cheung, ¡§Design of a stable and robust fuzzy

controller for a class of nonlinear system¡¨, Proceedings of the fifth IEEE

International Conference on Published vol. 3, pp. 2150-2154, 1996.

[2] G. Bartolini and A. Ferrara, ¡§Multivariable fuzzy sliding mode control by using

a simplex of control vectors¡¨, in Fuzzy reasoning in Information, Decision, and

Control Systems, S. G. Tzafestas and A. N. Venetsanopoulos, Eds. Amsterdam,

The Netherlands: Kluwer, pp. 307-328, 1994.

[3] C. L. Chen, P. C. Chen, and C. K. Chen, ¡§Analysis and design of fuzzy control

system¡¨, Fuzzy Sets Syst, vol. 57, no. 2, pp. 125-140, July 1993.

[4] S. Y. Chen, F. M. Yu, and H. Y. Chung, ¡§Decoupled fuzzy controller design with

single- input fuzzy logic¡¨, Fuzzy Sets and Systems, vol. 129, pp. 335-342, 2002.

[5] Y. H. Chen, ¡§Adaptive robust control of uncertain systems with measurement

noise¡¨, Automatica, vol. 28, pp. 715¡V728, 1992.

[6] B. J. Choi, S. W. Kwak, and B. K. Kim, ¡§Design and stability analysis of

single- input fuzzy logic controller¡¨, IEEE Trans. Syst., Man, Cybern. B, vol. 30,

no. 2, pp. 303-309, April 2000.

[7] B. J. Choi, S. W. Kwak, and B. K. Kim, ¡§Design of a single- input fuzzy logic

controller and its properties¡¨, Fuzzy Sets and Systems, vol. 106, pp. 299-308,

1999.

87

[8] S. B. Choi and J. S. Kim, ¡§A fuzzy-sliding mode controller for robust tracking

of robotic manipulators¡¨, Mechatronics, vol. 7, pp. 199¡V216, 1997.

[9] C. C. Fuh and P. C. Tung, ¡§Robust stability analysis of fuzzy control systems¡¨,

Fuzzy Sets and Systems, vol. 88, pp. 289¡V298, 1997.

[10] S. Galicher and L. Foulloy, ¡§Fuzzy controllers: Synthesis equivalence¡¨, IEEE

Trans. Fuzzy Syst., vol. 3, pp. 140-148, May 1995.

[11] J. S. Glower and J. Munighan, ¡§Design fuzzy controllers from a variable

structures standpoint¡¨, IEEE Trans. Fuzzy Syst., vol. 5. no. 1. pp. 138-144,

February 1997.

[12] Q. P. Ha, D. C. Rye, and H. F. Durrant Whyte, ¡§Fuzzy moving sliding mode

control with application to robotic manipulators¡¨, Automatica, vol. 35, pp.

607-616, 1999.

[13] K. C. Hsu, ¡§Adaptive variable structure control design for uncertain

time-delayed systems with nonlinear input¡¨, Dynamics and Control, vol. 8, pp.

341-354, 1998.

[14] G. C. Hwang and S. C. Lin, ¡§A stability approach to fuzzy control design for

nonlinear systems¡¨, Fuzzy Sets and Systems, vol. 48, pp. 279-287, 1992.

[15] Y. R. Hwang and M. Tomizuka, ¡§Fuzzy smoothing algorithms for variable

structure systems¡¨, IEEE Trans. Fuzzy Syst., vol. 2, pp. 277-284, Nov. 1994.

[16] A. Ishigame, T. Furakawa, S. Kawamoto, and T. Taniguchi, ¡§Sliding mode

controller design based on fuzzy inference for nonlinear systems¡¨, IEEE Trans

88

Industrial Electronics, vol. 40, pp. 64-70, 1993.

[17] S. W. Kim and J. J. Lee, ¡§Design of a fuzzy controller with fuzzy sliding

surface¡¨, Fuzzy Sets and Systems, vol. 71, pp. 359-367, 1995.

[18] C. C. Kung and C. C. Liao, ¡§Fuzzy-sliding mode controller design for tracking

control of non- linear system¡¨, Proceedings of the American Control Conference,

pp. 180-184, June 1994.

[19] C. C. Kung and S. C. Lin, ¡§Fuzzy controller design: A sliding mode approach¡¨,

in Fuzzy Reasoning in Information, Decision, and Control Systems, S. G.

Tzafestas and A. N. Venetsanopoulos, Eds. Amsterdam, The Netherlands:

Kluwer, pp. 277-306, 1994.

[20] M. L. Lee, H. Y. Chung, and F. M. Yu, ¡§Modeling of hierarchical fuzzy

systems¡¨, Fuzzy Sets and Systems. (to appear)

[21] M. L. Lee, ¡§Hierarchical fuzzy control with applications to seesaw systems¡¨, M.

S. thesis, Department of Electrical Engineering, National Central University,

2000.

[22] H. X. Li and H. B. Gatland, ¡§Conventional fuzzy control and its enhancement¡¨,

IEEE Trans. Syst., Man, Cybern. B, vol. 26, pp. 791¡V797, 1996.

[23] H. X. Li and H. B. Gatland, ¡§A new methodology for designing a fuzzy logic

controller¡¨, IEEE Trans. Syst., Man, Cybern., vol. 25, pp. 505¡V512, 1995.

[24] W. S. Lin, and C. S. Chen, ¡§Robust adaptive sliding mode control using fuzzy

modelling for a class of uncertain MIMO nonlinear systems¡¨, Control Theory

89

and Applications, IEE Proceedings part D, vol. 149, pp 193-201, 2002.

[25] K. Liu and F. L. Lewis, ¡§Some issues about fuzzy control¡¨, in proc. IEEE Conf.

Decision Contr. , San Antonio, TX, vol. 2, pp. 1743-1748, Dec. 1993.

[26] J. C. Lo and Y. H. Kuo, ¡§Decoupled Fuzzy Sliding-Mode Control¡¨, IEEE Trans.

Fuzzy Syst., vol. 6. no. 3, pp. 426-435, August 1998.

[27] Y. S. Lu and J. S. Chen, ¡§A self-organizing fuzzy sliding-mode controller

design for a class of nonlinear servo systems¡¨, IEEE Trans. Ind. Electron., vol.

41, pp. 492¡V502, Oct. 1994.

[28] N. Luo and M. De La Sen, ¡§State feedback sliding mode control of a class of

uncertain time delay systems¡¨, IEE Proceeding part D, vol. 140, pp. 261-274,

1993.

[29] N. Luo, M. De La Sen, and J. Rodellar, ¡§Robust stabilization of a class of

uncertain time delay systems in sliding mode¡¨, Int. J. of robust and nonlinear

control, vol. 7, pp. 59¡V74, 1997.

[30] M. S. Mahmoud, ¡§Adaptive control of a class of time-delay systems with

uncertain parameters¡¨, Int. J. Control, vol. 63, pp. 937¡V950, 1996.

[31] E. H. Mamdani, ¡§Applications of fuzzy algorithms for simple dynamic plants¡¨,

Proc. IEE 121, pp. 1585-1588, 1974.

[32] R. K. Mudi and N. R. Pal, ¡§A robust self-tuning scheme for PI- and PD-type

fuzzy controllers¡¨, IEEE Trans. Fuzzy Syst., vol. 7. no. 1. pp. 2-16, February

1999.

90

[33] S. Oucheriah, ¡§Robust sliding mode control of uncertain dynamic delay systems

in the presence of matched and unmatched uncertainties¡¨, ASME J. of Dynamic

Systems, Measurement, and Control, vol. 119, pp. 69¡V72, 1997.

[34] S. Oucheriah, ¡§Dynamic compensation of uncertain time-delay systems using

variable structure approach¡¨, IEEE Trans. on Circuits and Systems-I, vol. 42, pp.

466¡V470, 1995.

[35] R. Palm, ¡§Designs of Fuzzy Controllers¡¨, in Fuzzy Systems Modeling and

Control, (H. T. Nguyen, M Sugeno, Eds), The Handbooks of Fuzzy Sets,

Kluwer Academic, Boston, pp. 227-272, 1998.

[36] R. Palm, ¡§Robust control by fuzzy sliding mode¡¨, Automatica, vol. 30, no.9, pp.

1429¡V1437, 1994.

[37] R. Palm, ¡§Sliding mode fuzzy control¡¨, in Int. Control Fuzzy Syst., pp. 519¡V526,

1992.

[38] K. Shyu and J. Yan, ¡§Variable-structure model following adaptive control for

systems with time-varying delay¡¨, Control theory and Advanced Technology,

vol. 10, pp. 513-521, 1994.

[39] C. H. Tsai, H. Y. Chung, and F. M. Yu, ¡§Neuro-sliding mode control with its

applications to seesaw systems¡¨, IEEE Trans. on Neural Network. (to appear)

[40] V. I. Utkin, K. D. Young, ¡§Methods for constructing discontinuity planes in

multidimensional variable structure systems¡¨, Automation Remote Control, vol.

39, pp. 1466-1470, 1979.

[41] H. B. Verbruggen, H. J. Zimmermann, and R. Babuska, ¡§Fuzzy Algorithms for

Control¡¨, Kluwer Academic, Boston, 1999.

[42] Z. W. Woo, H. Y. Chung, and J. J. Lin, ¡§A PID type fuzzy controller with

self-tuning scaling factors¡¨, Fuzzy Sets and Systems, vol. 115, pp.321-326, 2000.

[43] S. Y. Yi and M. J. Chung, ¡§Systematic design and stability analysis of a fuzzy

logic controller¡¨, Fuzzy Sets and Systems, vol. 72, pp. 271¡V298, 1995.

[44] F. M. Yu, H. Y. Chung, and S. Y. Chen, ¡§Fuzzy-sliding mode controller design

for uncertain time-delayed systems with nonlinear input¡¨, Fuzzy Sets and

Systems. (to appear)

[45] F. M. Yu, H. Y. Chung, and C. N. Huang, ¡§The Robust Stability of Seesaw

System with Fuzzy Logic Control¡¨, International Journal of Computer

Applications in Technology.. (to appear)Advisor Hung-Yuan Chung(ÁéÂE·½)

Files approve immediately

85344008.pdf Date of Submission 2003-07-16

Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.