Title page for 84342007


[Back to Results | New Search]

Student Number 84342007
Author Jiann-Yeou Rau(Ǩ)
Author's Email Address No Public.
Statistics This thesis had been viewed 2503 times. Download 410 times.
Department Civil Engineering
Year 2001
Semester 2
Degree Ph.D.
Type of Document Doctoral Dissertation
Language zh-TW.Big5 Chinese
Title Geometrical Building Modeling and Its Application to the Ortho-Rectification for Aerial Images
Date of Defense 2002-01-15
Page Count 104
Keyword
  • 3-D City Model
  • Orthophoto
  • Split-Merge-Shape
  • Abstract Due to the huge demand and the importance of 3-D city models, an effective solution for geometrical building modeling is indispensable. From the application point of view, an interactive system for geometrical building modeling based on a semi-automatic approach is presented. A true-orthophoto rectification scheme based on the generated building models is also proposed.
    The data used in the proposed system are 3-D visible roof-edges that have been manually measured from a stereo-model, or the 3-D building outlines from a digital topographic map. The core technology is called the "Split-Merge-Shape" (SMS) method. The SPLIT and MERGE steps are the two main procedures for topology reconstruction from non-related roof-edges. The SHAPE step uses the available roof-edge height information to define an appropriate rooftop. With the SMS method, the topographic mapping of buildings, and geometric building modeling, can be seamlessly integrated into a unified procedure.
    In a conventional ortho-rectification procedure using a digital terrain model, the correction of relief displacement due to buildings is not considered. Accordingly, any information hidden by buildings or in their shadow is not restored. In order to restore the most complete information and to correct the relief displacement of buildings, a rigorous true-orthophoto rectification scheme is proposed. In the proposed scheme, 3-D building models, multi-view aerial images, digital terrain models, and the sun's orientation are all utilized. Terrain and building relief displacement corrections as well as hidden area compensation, seamless mosaicking, and shadowed area enhancement are integrated into one procedure.
    This thesis starts with an overview of state-of-the-art technologies on the subject of building modeling and orthoimage rectification. Then, the SMS method is presented, including an evaluation of its feasibility, robustness, efficiency and accuracy. Finally, the generated building models are applied to true-orthophoto generation, 3-D city landscape simulation, and 3-D GIS querying. The applicability of the SMS method is thus demonstrated.
    Table of Content TABLE OF CONTENTS
    KnI
    ABSTRACTII
    ACKNOWLEDGEMENTSIII
    TABLE OF CONTENTSIV
    LIST OF TABLESVII
    LIST OF FIGURESVIII
    1. INTRODUCTION1
    1.1.Related Work on 3-D Building Model Generation5
    1.1.1.Types of Building Models7
    1.1.2.Automatic vs. Semi-Automatic Approaches10
    1.1.3.Bottom-Up, Top-Down and Hybrid14
    1.1.4.DSM, Points vs. Lines15
    1.1.5.The Proposed Scheme17
    1.1.5.1.The Generated Building Models18
    1.1.5.2.Automation Phase19
    1.1.5.3.Human Intervention19
    1.2.Related Work on Ortho-Rectification19
    1.2.1.Image Occlusion20
    1.2.2.Data Merging20
    1.2.3.Shadow Enhancement21
    1.2.4.The Proposed Scheme21
    1.3.Organization of the Thesis22
    2. THE SPLIT-MERGE-SHAPE METHOD23
    2.1.Initial Building Model24
    2.2.Pre-Processing25
    2.2.1.Collinear Processing26
    2.2.2.Orthogonal Processing26
    2.2.3.Dangle Removal27
    2.2.4.Dangle Snapping27
    2.3.SPLIT30
    2.4.MERGE30
    2.5.SHAPE32
    3. GENERATION OF POLYHEDRAL MODELS38
    3.1.GUI Interface of the SMS System38
    3.2.Parameter Setup in the SMS System39
    3.3.Human Intervention41
    3.3.1.Failures Treatment42
    3.3.2.Post-Processing Functions46
    3.4.Line-Segments from Visible Roof-Edges48
    3.4.1.Case I49
    3.4.1.1.Robustness Evaluation49
    3.4.1.2.Efficiency Estimation50
    3.4.1.3.Accuracy Evaluation52
    3.4.2.Case II55
    3.5.Line-Segments from Urban Topographic Map57
    3.6.Summary61
    3.6.1.Advantages61
    3.6.2.Limitations63
    4. GENERATION OF PRISMATIC MODELS64
    4.1.Select, Fuse and Shape64
    4.2.Case Study67
    4.3.3-D GIS Application67
    4.4.Summary69
    5. ORTHOIMAGE RECTIFICATION FOR BUILT-UP AREAS70
    5.1.Data Acquisition and Orientation Modeling70
    5.2.Ortho Rectification71
    5.3.The Proposed Scheme72
    5.3.1.Image-Object Reprojection72
    5.3.2.Hidden Area Detection73
    5.3.3.Seamless Mosaicking74
    5.3.4.Shadow Treatment77
    5.4.Case Study79
    5.5.Performance Evaluation79
    5.5.1.Ortho-Rectification Using DTM80
    5.5.2.True Ortho-Rectification from a Quadruplet84
    5.5.3.Assessment of Geometric Quality85
    5.5.4.Assessment of Radiometric Quality88
    5.6.Application to Flight Simulation88
    5.7.Summary91
    6. CONCLUSIONS AND FUTURE WORK92
    REFERENCES96
    CURRICULUM VITAE104
    Reference CVIU : Computer Vision and Image Understanding
    CVPR : Computer Vision and Pattern Recognition
    CVGIP : Computer Vision, Graphic, and Image Processing
    IAPRS : International Archives of Photogrammetry and Remote Sensing
    IJPRS : International Journal of Photogrammetry and Remote Sensing
    PE & RS: Photogrammetric Engineering and Remote Sensing
    Abkar, A.A., and M.A. Sharifi, 2000. Likelihood based image segmentation and classification: concepts and applications, Proc. of IAPRS, Vol.33, B3, Amsterdam, Netherlands, pp.9-16.
    Amhar, F., J. Josef and C. Ries, 1998. The generation of true orthophotos using a 3D building model in conjunction with a conventional DTM, Proc. of IAPRS, Vol.32, Part 4 "GIS-Between Visions and Applications", Stuttgart, Germany, pp.16-22.
    Baillard, C. and A. Zisserman, 2000. A plane sweep strategy for the 3D reconstruction of buildings from multiple images, Proc. of IAPRS, Vol.33, B3, Amsterdam, Netherlands, pp.56-62.
    Bignone, F. 1995. Segment stereo matching and coplanar grouping, Technical Report BIWI-TR-165, Institute of Communications Technology, Image Science Lab, ETH, Zurich, Switzerland.
    Brenner, C., 2000. Towards fully automatic generation of city models, Proc. of IAPRS, Vol.33, B3, Amsterdam, Netherlands, pp.84-92.
    Braun, C., T. H. Kolbe, F. Lang, W. Schickler, V. Steinhange, A. B. Cremers, W. Forstner & L. Plumer, 1995. Models for Photogrammetric Building Reconstruction, Computer & Graphics, Vol. 19, No. 1, pp. 109-118.
    Brunn, A, E. Gulch, F. Lang, and W. Forstner, 1998. A hybrid concept for 3D building acquisition, ISPRS Journal of Photogrammetry & Remote Sensing, Vol.53, pp.119-129.
    Canny, J., 1986. A computational approach to edge detection, IEEE Trans. On PAMI, Vol. 8, No. 6, pp.679-698.
    Chen, L.C. and L.H. Lee, 1993. Rigorous generation of digital orthophotos from SPOT images, PE & RS, Vol.59, No.3, pp.655-661.
    Chen, L.C. and J.Y. Rau, 1993. A unified solution for digital terrain model and orthoimage generation from SPOT stereopairs, IEEE Trans. on Geoscience and Remote Sensing, Vol.31, No.6, pp: 1243-1252.
    Chen, L.C., L.Y. Chang, 1998. Three dimensional positioning using SPOT stereo strips with sparse control, Journal of Surveying Engineering, ASCE, Vol.124, No.2, pp.63-72.
    Chen, L.C., C.Y. Lo, and J.Y. Rau, 2001. Generation of digital orthophotos from IKONOS geo images, Proc. of 22nd Asian Conference on Remote Sensing, Singapore, pp.1159-1164.
    Chen, L.C. and T.A. Teo, 2001. Orbit adjustment for EROS A1 high-resolution satellite images, Proc. of 22nd Asian Conference on Remote Sensing, Singapore, pp.1169-1174.
    Chen, N.Y., H.T. Wang, and M.M. Lin, 1997. Orthographic correction of airborne scanner imagery for mountainous areas, Proc. of the 3rd International Airborne Remote Sensing Conference and Exhibition, Copenhagen, Denmark, 7-10 July, 1997, Vol. II, pp. 293-299.
    Chio, S.H., 2001. A Practical Strategy for Roof Patch Extraction from Urban Stereo Aerial Images, Ph. D. Dissertation, National Cheng Kung University, Taiwan, R.O.C., 97 Pages.
    Cogan, L., D. Gugan, D. Hunter, D. Lutz, and S. Peny, 1988. KERN DSP1- Digital stereo-photogrammetric system, Proc. of IAPRS, Vol.27, Part B2, pp.71-83.
    Collins, R. T., C. O. Jaynes, Y.Q. Cheng, X. Wang, F. Stolle, E. M. Riseman, and R. Hanson, 1998. The ascender system: automated site modeling from multiple aerial images, CVIU, Vol.72, No.2, pp.143-162.
    Danahy, J., 1999. Visualization data needs in urban environmental planning and design, Photogrammetric Week (Fritsch, D. and Spiller, R., Eds.), Wichmann, Karlsruhe, pp.351-365.
    Deok, J. P., K. M. Nam & R. H. Park, 1995. Multi-resolution edge detection techniques, Pattern Recognition, Vol.28, No.2, pp.211-229.
    Duda, R. O. and P. E. Hart, 1972. Use of the Hough transformation to detect lines and curves in pictures, Graphics and Image Processing, Comm. of ACM, Vol.15, No.1, pp.11-15.
    Englert, R. and E. Gulch, 1996. One-eye stereo system for the acquisition of complex 3D building descriptions, GIS Journal, Vol.4, 1996.
    Faig, W. and T. Widmer, 2000. Automatic building extraction from aerial images, Proc. of IAPRS, Vol.33, B7, Amsterdam, Netherlands, pp.1708-1715.
    Fischer, A., T. H. Kolbe, F. Lang, Cremers, A. B., Forstner, W., Plumer, L. & Steinhange,V., 1998. Extracting Buildings from Aerial Images Using Hierarchical Aggregation in 2-D and 3-D, CVIU, Vol.72, No.2, Nov. pp.185-203.
    Forstner, W., 1994. A framework for low level feature extraction, Computer Vision ECCV'94 (J.O. Eklundh, ed.), Vol.2, Springer-Verlag, Berlin, pp.383-394, 1994.
    Forstner, W., 1999. 3D-City models: automatic and semiautomatic acquisition methods, Photogrammetric Week (Fritsch, D. and Spiller, R., Eds.), Wichmann, Karlsruhe.
    Frere, D., M. Hendrickx, J. Vandekerckhove, T. Moons and L. Van Gool, 1997. On the reconstruction of urban house roofs from aerial images, Automatic Extraction of Man-Made Object from Aerial and Space Images (II), Birkhauser, Basel, pp.87-96, 1997.
    Geibel, R. and U. Stilla, 2000. Segmentation of laser altimeter data for building reconstruction: different procedures and comparison, Proc. of IAPRS, Vol.33, B3, Amsterdam, Netherlands, pp.326-334.
    Grun, A. and H. Dan, 1997. TOBAGO - A Topology builder for the automated generation of building models, Automatic Extraction of Man-Made Object from Aerial and Space Images (II), Birkhauser, Basel, pp.149-160.
    Grun, A. and X. Wang, 1998, CC-Modeler: A Topology Generator for 3-D Building Models, IJPRS, Vol.53, pp.286-295.
    Grun, A., E. P. Baltsavias, and O. Henricsson, (Eds). 1995. Automatic Extraction of Man-Made Object from Aerial and Space Images (I), Birkhauser, Basel.
    Grun, A., E. P. Baltsavias, and O. Henricsson, (Eds). 1997. Automatic Extraction of Man-Made Object from Aerial and Space Images (II), Birkhauser, Basel.
    Grun, A. and X. Wang, 2001. News from cyber city modeler, Automatic Extraction of Man-Made Object from Aerial and Space Images (III), Birkhauser, Basel, in print.
    Gulch, E., H. Muller & T. Labe, 1999. Integration of Automatic Processes Into Semi-Automatic Building Extraction, Proc. of ISPRS Conference "Automatic Extraction Of GIS Objects From Digital Imagery", September 8-10, (INVITED).
    Haala, N. & C. Brenner, 1998. Interpretation of Urban Surface Models Using 2-D Building Information, CVIU, Vol.72, No.2, pp.204-214.
    Harwood, D., M. Subbarao, H. Hakalahti & L. S. Davis, 1987. A new class of edge-preserving smoothing filters, Pattern Recognition Letters, Vol.6, pp.155-162.
    Henricsson, O., 1998. The Role of Color Attributes and Similarity Grouping in 3-D Building Reconstruction, CVIU, Vol.72, No.2, pp.163-184.
    Hinsken, L., S. B. Miller, Y. Myint, and A. S. Walker, 1999. Error analysis for digital triangulation with airborne GPS, Proc. of ASPRS Annual Conference, Portland, Oregon, pp: 24-38.
    Hoffmann, C. M., 1989. Geometric and Solid Modeling, Morgan Kaufmann, Palo Alto, CA, U.S.A.
    Hofmann, P. and W. Reinhardt, 2000. The extraction of GIS features from high-resolution imagery using advanced method based on additional contextual information-first experiment, Proc. of IAPRS, Vol.33, B4, Amsterdam, Netherlands, pp.376-383.
    Hohle, J., 1996. Experiences with the production of digital orthophotos, PE & RS, Vol.62, No.10, pp.1189-1194.
    Joshua, G., 2001. Evaluating the accuracy of digital orthophotos quadrangles (DOQ) in the context of parcel-based GIS, PE & RS, Vol.67, No.2, pp.199-205.
    Kagawa,Y. and R. Shibasaki, 2000. Automatic Acquisition of 3D Spatial Data in City with Air-Borne TLS (Three Line Scanner), Proc. of the 21st Asian Conference on Remote Sensing, Taipei, pp.131-134.
    Kim, T. and J.-P. Muller, 1998. A technique for 3D building reconstruction, PE & RS, Vol.64, No.9, pp.923-930.
    Lang, F. and W. Forstner, 1996. 3D City modeling with a digital one-eye-stereo system, Proc. of ISPRS Comm. IV, 4, Vienna, pp.261-266, 1996.
    Lange, E., 1999. The degree of realism of GIS-based virtual landscapes: implications for spatial planning, Photogrammetric Week (Fritsch, D. and Spiller, R., Eds.), Wichmann, Karlsruhe, pp. 367-374.
    Leberl, F., W. Walcher, R. Wilson and M. Gruber, 1999. Models of urban areas for line-of-sight analyses, Proc. of IAPRS, Vol.32, Part 3-2W5, Munich, Germany, pp.217-226.
    Lechervy, Y., C. Louis and O. Monga, 1997. Crestlines contribution to the automatic building extraction, Automatic Extraction of Man-Made Object from Aerial and Space Images (II), Birkhauser, Basel, pp.161-172.
    Li, D., K. Di, and D. Li, 2000. Land use classification of remote sensing image with GIS data based on spatial data mining techniques, Proc. of IAPRS, Vol.33, B3, Amsterdam, Netherlands, pp.238-245.
    Lin, C. and R. Nevatia, 1998. Building detection and description from a single intensity image, CVIU, Vol.72, No.2, pp.101-121.
    Liow, Y.T. and T. Pavlidis, 1990. Use of shadows for extracting buildings in aerial images, CVGIP, Vol.49, pp.242-277.
    Lohr, R., 1996. Pushbroom laser scanning - First operational results, Geo. Information Systems, Vol.9, No.4, pp.12-15.
    Mantyla, M., 1988. An Introduction to Solid Modeling: Principles of Computer Science, Computer Science Press, Maryland, U.S.A.
    Miyagawa, I., S. Nagai, K. Sugiyama, 2000. Shape recovery from hybrid feature points with factorization method, Proc. of IAPRS, Vol.33, B3, Amsterdam, Netherlands, pp.608-615.
    Mohan, R. and R. Nevatia, 1989. Using perceptual organization to extract 3-D structures, IEEE Trans. on PAMI, Vol.11, No.11, pp.1121-1139.
    Mohan, R. and R. Nevatia, 1992. Perceptual Organization for Scene Segmentation and Description, IEEE Trans. on PAMI, Vol.14, No.6, pp.616-634.
    O'Neill, M.A. and I.J. Dowman, 1988. The generation of epipolar synthetic stereo mates for SPOT images using a DEM, Proc. of XVI ISPRS Congress, Commission III, Kyoto, pp.587-598.
    Paparoditis, N., M. Cord, M. Jordan, and J.P. Cocquerez, 1998. Building detection and reconstruction from mid- and high-resolution aerial imagery, CVIU, Vol.72, No.2, pp.122-142.
    Rau, J.Y. and L.C. Chen, 2001, True Orthophoto Generation of Built-Up Areas Using Multi-View Images, PE & RS, (Accepted).
    Richards, J.A., 1986. Remote Sensing Digital Image Analysis: An Introduction, Springer-Verlag, Berlin Heidelberg, New York, 281 p.
    Risse, T., 1989. Hough transform for line recognition: complexity of evidence accumulation and cluster detection, CVGIP, No.46, pp.327-345.
    Rottensteiner, F, 2000. Semi-automatic building reconstruction integrated in strict bundle block adjustment, Proc. of IAPRS, Vol.33, B2, Amsterdam, Netherlands, pp.461-468.
    Sandau, R, B. Braunecker, H. Driescher, A. Eckaudt, S. Hilbert, J. Hutton, W. Kirchhofer, E. Lithopoulos, R. Reulke, and S. Wicki, 2000. Design principles of the LH-Systems ADS40 airborne digital sensor, Proc. of IAPRS, Vol.33, B1, Amsterdam, Netherlands, pp.258-265.
    Schickler, W. and A. Thorpe, 1998. Operational procedure for automatic true orthophoto generation, Proc. of IAPRS, Vol.32, Part 4, "GIS-Between Visions and Applications", Stuttgart, Germany, pp.527-532.
    Schmid, C. and Zisserman, A., 1997. Automatic line matching across views, Proc. of IEEE Conference on Computer Vision and Pattern Recognition, pp. 666-671, 1997.
    Scholze, S., T. Moons, F. Ade, and L. Vangool, 2000. Exploiting color for edge extraction and line segment stereo matching in high-resolution aerial imagery, Proc. of IAPRS, Vol.33, B3, Amsterdam, Netherlands, pp.815-822.
    Shi, Z., R. Shibasaki and S. Murai, 1997. Automated building extraction from digital stereo imagery, Automatic Extraction of Man-Made Object from Aerial and Space Images (II), Basel, pp.119-128.
    Siebe, E. and U. Buning, 1997. Application of digital photogrammetric products for cellular radio network planning, Photogrammetric Week (Fritsch, D. and Spiller, R., Eds.), Wichmann, Karlsruhe, pp.159-164.
    Skarlatos, D., 1999. Orthophotograph production in urban areas, Photogrammetric Record, Vol.16, No.94, pp.643-650.
    Wiesel, J.W., 1985. Digital image processing for orthophotos generation, Photogrammetria, Vol.40, No.2, pp. 69-76.
    Wang, X. and A. Grun, 1998. A 3-D city model data structure and its implementation in a relational database, Proc. of the Conference "Spatial Information Science and Technology", Wuhan, China, 1998, pp. 429-436.
    Weidner, U., 1997. Digital Surface Models for Building Extraction, Automatic Extraction of Man-Made Object from Aerial and Space Images (II), Birkhauser, Basel, pp.193-200.
    Winman, H., 1997. Least squares matching for three dimensional building reconstruction, Automatic Extraction of Man-Made Object from Aerial and Space Images (II), Birkhauser, Basel, pp.223-232.
    Varshosaz, M., I. Dowman, and D. Chapman, 2000. Towards automatic reconstruction of visually realistic models of buildings, Proc. of IAPRS, Vol.33, B5, Amsterdam, Netherlands, pp.180-186.
    Volz, S. and D. Klinec, 1999. Nexus: the development of a platform for location aware application, Proc. of the third Turkish-German Joint Geodetic Days, Vol.2, Istanbul, Turkey, pp. 599-608.
    Yang, B., Q. Li, and D. Li, 2000. Building model creating and storing in 3D urban GIS, Proc. of IAPRS, Vol.33, B4, Amsterdam, Netherlands, pp.1192-1198.
    Zhang, Z. and J. Zhang, 2000. Semi-automatic building extraction based on least squares matching with geometric constrain in object space, Proc. of IAPRS, Vol.33, B3, Amsterdam, Netherlands, pp.1022-1025.
    Zhao, B. and J. C. Trinder, 2000. Integrated-approach-based automatic building extraction, Proc. of IAPRS, Vol.33, B3, Amsterdam, Netherlands, pp.1026-1032.
    Advisor
  • Liang-Chien Chen(})
  • Files
  • 84342007.pdf
  • approve immediately
    Date of Submission 2002-01-15

    [Back to Results | New Search]


    Browse | Search All Available ETDs

    If you have dissertation-related questions, please contact with the NCU library extension service section.
    Our service phone is (03)422-7151 Ext. 57407,E-mail is also welcomed.