碩博士論文 943204057 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 洪庭旭(Ting-Syu Hong)
查詢紙本館藏  
電子郵件信箱 E-mail 資料不公開
畢業系所 化學工程與材料工程研究所(Chemical and Materials Engineering)
畢業學位 碩士(Master) 畢業時期 095學年第2學期
論文名稱(中) 界面活性劑溶液濕潤疏水表面之行為
論文名稱(英) Wetting Behavior of Surfactant Solutions on Hydrophobic Surfaces: Copper and Teflon
檔案
943204057.pdf
  1. 本電子論文使用權限為一年後開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 一年後開放
論文語文/頁數 中文/98
統計 本論文已被瀏覽 3677 次,被下載 4793 次
摘要(中) 水滴濕潤(drop wetting)物質表面,決定於楊氏方程式(Young’s equation)熱力學平衡,氣-固(gas-solid)張力、固-液(solid-liquid)張力、液-氣(liquid-gas)張力,三個方向的張力維持平衡,進而在表面上液體跟固體之間表現出一個角度,此角度稱為接觸角(contact angle)。
  本研究利用不同的界面活性劑(surfactant)水溶液,在銅和鐵氟龍(Teflon)這兩種不同的疏水表面,研究其水滴濕潤行為的探討,在接觸角的部分,發現無論是陽離子型(cationic)或陰離子型(anionic)的單尾鏈(one tail)界面活性劑,並不會由於疏水端碳數的增加,使其接觸角下降,而在表面張力(surface tension)方面,不管是哪一種帶電離子型的界面活性劑,也不會因疏水端的碳數增加,而造成表面張力下降的幅度特別低,但由不同尾鏈數目來比較,接觸角及表面張力都比單尾鏈的帶電離子型的界面活性劑,所表現還要低,在非離子型的界面活性劑方面,本研究發現使用擁有疏水端十二個碳數的界面活性劑和有苯環的疏水端比較,發現擁有苯環的疏水端對疏水表面有低的接觸角,而表面張力也相對的比較低。
  在實驗中發現,界面活性劑在濕潤固體表面時,跟固體本身的帶電荷性質有關係,我們將濃度增加到臨界微胞濃度(Critical micelle concentration)CMC時,無論是離子型或非離子型,表面張力開始維持定值,但離子型濃度達到CMC約五倍時,又繼續下降,我們根據加入鹽類於溶液中,證明單尾鏈離子型界面活性劑,當達到高濃度時,會因靜電吸引關係使溶液中的界面活性劑相互之間的距離更為緊密,進而讓表面張力繼續下降,在接觸角方面,當濃度達到了CMC時,在疏水銅表面上,非離子型和單尾鏈陽離子型接觸角都約維持定值,但單尾鏈陰離子型達到約5倍CMC時,因表面張力的下降關係,而接觸角持續下降,在鐵氟龍表面上,只有非離子型的界面活劑,達到CMC,接觸角維持定值,而單尾鏈陰離子和陽離子型濃度到達5倍CMC時,接觸角隨表面張力下降因素,造成接觸角度下降,而雙尾鏈帶電離子界面活性劑方面,無論在疏水銅表面或鐵氟龍接觸角的水滴角濕潤現象,可能隨濃度增加在表面上因結構排列的不同,因而濕潤接觸角度跟著濃度的增加,呈現直線下降。
摘要(英) Drop wetting on material surface that is decided by Young’s equation. Gas-solid tension, solid-liquid tension and liquid-gas tension are balance on wetting substrate. Between liquid and solid is display a angle that the angle is call: “Contact Angle”.
 In the research, steady of wetting behavior of surfactant solutions on the hydrophobic surfaces: Copper and Teflon. 
 We know that have low γsg (Cu=21.2mN/m,Teflon=6.78mN/m) and high contact angle (Cu~100°,Teflon~130°) on Cu and Teflon surfaces. Because of hydrophobic property surfaces, therefore use surfactant solutions to decrease γgl,γsl and contact angle for achieve wetting effectiveness. 
We find out contact angle of nonionic surfactants are not change when reach CMC, but contact angle of anionic surfactants are continue decrease when reach high CMC on Cu and Teflon surfaces. Contact angle of cationic surfactants are not change on Cu surface, but that continue decrease when reach concentration on Teflon surface. However, contact angle of two tail ionic surfactants are always continue decrease with concentration increase on Cu and Teflon surfaces.
關鍵字(中)
  • 接觸角
  • 界面活性劑
  • 關鍵字(英)
  • contact angle
  • surfactant
  • 論文目次 中文摘要……………………………………………………………………Ⅰ
    Abstract……………………………………………………………Ⅲ
    誌謝…………………………………………………………………Ⅳ
    目錄…………………………………………………………………Ⅴ
    圖目錄………………………………………………………………Ⅷ
    表目錄………………………………………………………………XI
    第一章 緒論........................................... 1
    1.1前言................................................1
    1.2銅之薄膜製程機制及其性質............................3
    1.2.1半導體之銅製程介紹................................3
    1.2.2銅的性質..........................................4
    1.3鐵氟龍之製造及其應用................................6
    1.3.1歷史..............................................6
    1.3.2性質與應用........................................6
    1.4界面活性劑的介紹....................................9
    第二章 相關原理與文獻回顧.............................18
    2.1表面張力的測定原理與方法............................18
    2.1.1表面張力之概論與原理..............................18
    2.1.2表面張力的測定方法................................19
    2.2 接觸角之相關原理與測定.............................23
    2.2.1 氣-液-固系統的濕透行為...........................23
    2.2.2前進角與後退角....................................25
    2.2.3接觸角的測定......................................26
    2.3相關文獻回顧........................................27
    第三章 實驗介紹.......................................32
    3.1實驗藥品材料與儀器..................................32
    3.1.1材料與藥品........................................32
    3.1.2儀器介紹與相關原理................................33
    3.1.2.1 影像式接觸角量測儀(Software-Controlled Multi Dosing System-DSA10)...................................33
    3.1.2.2 表面能原理介紹.................................35
    3.1.3 實驗用界面活性劑簡介............................36
    3.2實驗步驟............................................38
    3.2.1 銅片表面熱處理...................................38
    3.2.2影像式接觸角量測儀參數設定........................38
    3.2.3 界面活性劑潤濕性實驗流程.........................39
    3.2.4界面活性劑清潔液濃度與銅表面接觸角相關性..........40
    3.2.5 比較相同濃度下碳鏈長短對接觸角的影響.............41
    3.2.6 界面活性劑加入添加劑的影響.......................41
    第四章 實驗結果與討論.................................42
    4.1銅金屬表面氧化性質探討..............................42
    4.2 銅、Teflon與空氣表面能測定.........................45
    4.3界面活性劑濕潤現象..................................47
    4.3.1非離子型在表面張力行為與疏水銅表面及Teflon表面影響.....................................................47
    4.3.2陰離子型在表面張力行為與疏水銅表面及Teflon表面影響.....................................................53
    4.3.3陽離子型在表面張力行為與疏水銅表面及Teflon表面影響.....................................................60
    4.3.4雙尾鏈之陰、陽離子型在表面張力行為與疏水銅表面及Teflon表面影響...............................................66
    4.4界面活性劑加入鹽類的影響............................72
    第五章 結論...........................................79
    5.1銅表面親疏水性質....................................79
    5.2界面活性劑與表面張力的行為..........................79
    5.3界面活性劑在疏水表面的潤濕行為......................80
    第六章 參考文獻.......................................81
    參考文獻 (1) 葉銘智,分子構型對濕透行為之影響研究,國立台灣大學化學工程學研究所博士論文(2003.6)
    (2) 廖金龍,陰離子型高分子界面活性劑之合成與其在化學機械研磨漿之應用,國立成功大學化學工程研究所碩士論文(1999,6)
    (3) 土肥 俊郎 ,半導體平坦化CMP技術,全華科技(2000)
    (4) 吳世全,銅金屬導線之發展與研製評估,第五卷第三期,奈米通訊(2001)
    (5) 莊達人,VLSI製造技術ver.5,高立圖書(2004)
    (6) H. Wieder and A. W. Czanderna, “The oxidation of copper films to CuO0.67”, J. Phys. Chem. 28, 816 (1962)
    (7) 洪佳惠,膽固醇與膽鹽對微脂粒穩定度的影響,中央大學化材系碩士論文(2003.6)
    (8) 張有義,郭蘭生,膠體及界面化學入門,高立圖書(1998)
    (9) 蔡明蒔,化學機械研磨後清洗技術簡介,奈米通訊第六卷
    第一期P.3
    (10) http://zh.wikipedia.org/w/index.php(維基百科)
    (11) D.L. Cocke,R. Schennachb, M.A. Hossaina, D.E. Mencerc, H. McWhinney, J.R. Pargae, M. Kesmeza, J.A.G. Gomesa and M.Y.A. Mollah,“The low-temperature thermal oxidation of copper,
    Cu 3O2,and its influence on past and future studies”, Vacuum 79, 71 (2005)
    (12) 簡振龍,陰/陽離子界面活性劑的混合增效作用之研究
    ,國立成功大學化學工程學系 碩士論文(2000.6)
    (13) H.F. Eicke and V. Arnold, J. Colloid Interf. Sci. 46, 101 (1974).
    (14) B. Jonsson and B. Lindman, "Surfactants and polymers in aqueous solution" JOHN WILEY&SONS, 37 (1998).
    (15) S. Honda and S. Tarabe, Capillary Electrophoresis (Japanese version), Koudansha Scientific, Tokyo, 66 (1995)
    (16) M. J. Blandamer, B. Briggs, P. M. Cullis and J. B. F. N. Engberts, Phys. Chem. Chem. Phys. 2, 5146(2000)
    (17) L. Ramos,"Surfactant-Mediated Two-Dimensional Crystallization of Colloidal Crystals" Science 286,2325 (1999).
    (18) 蔣安仁,中國大百科全書,2005
    (19) J. L. Anderson, V. Pino, E. C. Hagberg, V. V. Sheares and D. W. Armstrong" Surfactant solvation effects and micelle formation in ionic liquids" CHEM. COMMUN, 2444(2003)
    (20) M. J. Rosen, "Surfactants and interfacial phenomena" WILEY INTERSCIENCE, 40, (2004)
    (21)李佩娟,界面活性劑形成微胞之熱力學物性量測,國立臺灣大學化學工程學研究所 碩士論文(2002.6)
    (22) J. S. ROWLINSON and B. WIDOM, "Molecular Theory of Capillarity", OXFORD SCIENCE PUBLICATIONS,66,816 (1982).
    (23) Gennes, P. G. De, B. Wyart, Francoise, Quere and David, "Capillarity and wetting Phenomena Drops, Bubbles, Pearls, Waves", Springer, (2004).
    (24) L. Gao and T. J. McCarthy, “Contact Angle Hystersis Explained”, Langmuir, 22, 6234(2006)
    (25) D. E. Sullivan, “Surface Tension and Contact Angle of a liquid-solid interface”, J. Chem. Phys. 74 (1981)
    (26) V. M. Starov, S. R. Kosvintsev and M. G. Velarde, “Spreading of Surfactant Solutions over Hydrophobic Substrates”, Journal of Colloid and Interface Science , 227, 185 (2000)
    (27) D. M. Eckmann, D. P. Cavanagh and A. B. Branger “Wetting Characteristics of Aqueous Surfactant-Laden Drops”, Journal of Colloid and Interface Science 242, 386 (2001)
    (28) V. Dutschk, K. G. Sabbatovskiy, M. Stolz, K. Grundke and V. M. Rudoy, “Unusual wetting dynamics of aqueous surfactant solutions on polymer surfaces”, Journal of Colloid and Interface Science, 267, 456, (2003)
    (29) R. Mohammadi, J. Wassink and A. Amirfazli, “Effect of Surfactants on Wetting of Super-Hydrophobic Surfaces”, Langmuir , 20, 9657(2004)
    (30) M. Ferrari, F. Ravera, S. Rao and L. Liggieri, “Surfactant adsorption at superhydrophobic surfaces”, APPLIED PHYSICS LETTERS 89, 053104 (2006)
    (31) K. Szymczyk, A. Zdziennicka, B. Janczuk and W. Wojcik, “The wettability of polytetrafluoroethylene and polymethyl methacrylate by aqueous solution of two cationic surfactants mixture”, Journal of Colloid and Interface Science, 293, 172 (2006)
    (32) J. C. Yang, B. Kolasa and J. M. Gibson, “Self-limiting oxidation of copper”, Appl. Phys. Lett., 73, 19 (1998)
    (33) J. C. Yang, D. Evan and L. Tropia, “From nucleation to coalescence of Cu2O islands during in situ oxidation of Cu(001)”, Appl. Phys. Lett., 81,2(2002)
    (34) G. Zhou and J. C. Yang, “Reduction of Cu2O Islands Grown on a Cu(100) Surface through Vacuum Annealing”, PRL 93, 226101 (2004)
    (35) J. Zhang, W. X. Zhou, M. B. Chan-Park and S. R. Connerb, “Argon Plasma Modification of SU-8 for Very High Aspect Ratio and Dense Copper Electroforming”, Journal of The Electrochemical Society, 152, C716-C721 (2005)
    (36) R. R. Thomas, V. A. Brusic and B. M. Rush, “Correlation of Surface Wettability and Corrosion Rate for Benzotriazole-Treated Copper”, J. Electrochem. Soc., 139, 679(1992)
    指導教授
  • 曹琤 (Heng-Kwong Tsao)
  • 口試日期 2007-05-31 繳交日期 2007-06-11

    [回到前頁查詢結果 | 重新搜尋]


    若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡